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Compensating for population sampling in
simulations of epidemic spread on temporal
contact networks
Mathieu Génois1, Christian L. Vestergaard1, Ciro Cattuto2 & Alain Barrat1,2

Data describing human interactions often suffer from incomplete sampling of the underlying

population. As a consequence, the study of contagion processes using data-driven models

can lead to a severe underestimation of the epidemic risk. Here we present a systematic

method to alleviate this issue and obtain a better estimation of the risk in the context of

epidemic models informed by high-resolution time-resolved contact data. We consider

several such data sets collected in various contexts and perform controlled resampling

experiments. We show how the statistical information contained in the resampled data can

be used to build a series of surrogate versions of the unknown contacts. We simulate

epidemic processes on the resulting reconstructed data sets and show that it is possible to

obtain good estimates of the outcome of simulations performed using the complete data set.

We discuss limitations and potential improvements of our method.
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H
uman interactions play an important role in determining
the potential transmission routes of infectious diseases
and other contagion phenomena1. Their measure and

characterization represent an invaluable contribution to the study
of transmissible diseases2. While surveys and diaries in which
volunteer participants record their encounters3–7 have provided
crucial insights (see, however, (refs 4,8,9) for recent investigations
of the memory biases inherent in self-reporting procedures), new
approaches have recently emerged to measure contact patterns
between individuals with high resolution, using wearable sensors
that can detect the proximity of other similar devices10–20. The
resulting measuring infrastructures register contacts specifically
within the closed population formed by the participants wearing
sensors, with high spatial and temporal resolutions. In the recent
years, several data gathering efforts have used such methods to
obtain, analyse and publish data sets describing the contact
patterns between individuals in various contexts in the form of
temporal networks14,20–24: nodes represent individuals and, at
each time step, a link is drawn between pairs of individuals who
are in contact25. Such data has been used to inform models of
epidemic spreading phenomena used to evaluate epidemic risks
and mitigation strategies in specific, size-limited contexts such as
schools or hospitals14,19,20,22,26–32, finding in particular outcomes
consistent with observed outbreak data20 or providing evidence of
links between specific contacts and transmission events19,32.

Despite the relevance and interest of such detailed data sets,
they suffer from the intrinsic limitation of the data gathering
method: contacts are registered only between participants
wearing sensors. Contacts with and between individuals who do
not wear sensors are thus missed. In other words, as most often
not all individuals accept to participate by wearing sensors, many
data sets obtained by such techniques suffer from population
sampling, despite efforts to maximise participation through for
example, scientific engagement of participants24,33. Hence, the
collected data only contains information on contacts occurring
among a fraction of the population under study.

Population sampling is well known to affect the properties of
static networks34–36: various statistical properties and mixing
patterns of the contact network of a fraction of the population of
interest may differ from those of the whole population, even if the
sampling is uniform37–40, and several works have focused on
inferring network statistics from the knowledge of incomplete
network data39,41–44. Both structural and temporal properties of
time-varying networks might as well be affected by missing data
effects16,39.

In addition, a crucial though little studied consequence of such
missing data is that simulations of dynamical processes in data-
driven models can be affected if incomplete data are used38,39,45.
For instance, in simulations of epidemic spreading, excluded
nodes are by definition unreachable and thus equivalent to
immunised nodes. Due to herd vaccination effects, the outcome
of simulations of epidemic models on sampled networks will thus
be underestimated with respect to simulations on the whole
network (Note, however, that in the context of transportation
networks, the inclusion of the most important transportation

nodes can be sufficient to describe the global worldwide spread of
influenza-like illnesses, at least in terms of times of arrival of the
spread45.) How to estimate the outcome of dynamical processes
on contact networks using incomplete data remains an open
question.

Here we make progresses on this issue for incompletely
sampled data describing networks of human face-to-face
interactions, collected by infrastructures based on sensors, under
the assumption that the population participating to the data
collection is a uniform random sample of the whole population of
interest. (We do not therefore address here the issue of non-
uniform sampling of contacts that may result from other
measurement methods such as diaries or surveys.) We proceed
through resampling experiments on empirical data sets in which
we exclude uniformly at random a fraction of the individuals
(nodes of the contact network). We measure how relevant
network statistics vary under such uniform resampling and
confirm that, although some crucial properties are stable,
numerical simulations of spreading processes performed using
incomplete data lead to strong underestimations of the epidemic
risk. Our goal and main contribution consists in putting forward
and comparing a hierarchy of systematic methods to provide
better estimates of the outcome of models of epidemic spread
in the whole population under study. To this aim, we do not
try to infer the true sequence of missing contacts. Instead, the
methods we present consist in the construction of surrogate
contact sequences for the excluded nodes, using only structural
and temporal information available in the resampled contact data.
We perform simulations of spreading processes on the
reconstructed data sets, obtained by the union of the resampled
and surrogate contacts, and investigate how their outcomes
vary depending on the amount of information included in the
reconstruction method. We show that it is possible to obtain
outcomes close to the results obtained on the complete data set,
while, as mentioned above, using only the incomplete data
severely underestimates the epidemic risk. We show the
efficiency of our procedure using three data sets collected in
widely different contexts and representative of very different
population structures found in day-to-day life: a scientific
conference, a high school and a workplace. We finally discuss
the limitations of our method in terms of sampling range, model
parameters and population sizes.

Results
Data and methodology. We consider data sets describing con-
tacts between individuals, collected by the SocioPatterns colla-
boration (http://www.sociopatterns.org) in three different
settings: a workplace (office building, InVS)46, a high school
(Thiers13)24 and a scientific conference (SFHH)21,22. These data
correspond to the close face-to-face proximity of individuals
equipped with wearable sensors, at a temporal resolution of 20 s
(ref. 16). Table 1 summarises the characteristics of each data set.
The contact data are represented by temporal networks, in which
nodes represent the participating individuals and a link between

Table 1 | Data sets.

Data set Type N r T Dates

InVS Workplace 92 63% 2 weeks 24 June–5 July 2013
Thiers13 High school 326 86% 1 week 2–7 December 2013
SFHH Conference 403 34% 2 days 3–4 June 2009

For each data set we specify the type of social situation, the number N of individuals whose contacts were measured, the corresponding participation rate r, the duration T and the dates of the data
collection.
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two nodes i and j at time t indicates that the two corresponding
persons were in contact at that time. These three data sets were
chosen as representative of different types of day-to-day contexts
and of different contact network structures: the SFHH data
correspond to a rather homogeneous contact network; the InVS
and Thiers13 populations were instead structured in departments
and classes, respectively. Moreover, high school classes (Thiers13)
are of similar sizes while the InVS department sizes are unequal.
Finally, the high school contact patterns are constrained by strict
and repetitive school schedules, while contacts in offices are less
regular across days.

To quantify how the incompleteness of data, assumed to stem
from a uniformly random participation of individuals to the data
collection, affects the outcome of simulations of dynamical
processes, we consider as ground truth the available data and
perform population resampling experiments by removing a
fraction f of the nodes uniformly at random. (Note that the full
data sets are also samples of all the contacts that occurred in the
populations, as the participation rate was lower than 100% in
each case.) We then simulate on the resampled data the
paradigmatic susceptible-infectious-recovered (SIR) and the
susceptible-infectious-susceptible (SIS) models of epidemic pro-
pagation. In these models, a susceptible (S) node becomes
infectious (I) at rate b when in contact with an infectious node.
Infectious nodes recover spontaneously at rate m. In the SIR
model, nodes then enter an immune recovered (R) state, while in
the SIS model, nodes become susceptible again and can be
reinfected. The quantities of interest are for the SIR model the
distribution of epidemic sizes, defined as the final fraction of
recovered nodes, and for the SIS model the average fraction of
infectious nodes iN in the stationary state. We also calculate for
the SIR model the fraction of epidemics that infect more than
20% of the population and the average size of these epidemics.
For the SIS model, we determine the epidemic threshold bc for
different values of m: it corresponds to the value of b that
separates an epidemic-free state (iN¼ 0) for bobc from an
endemic state (iN40) for b4bc, and is thus an important
indicator of the epidemic risk. We refer to the Methods section
for further details on the simulations.

We then present several methods for constructing surrogate
data using only information contained in the resampled data. We
compare for each data set the outcomes of simulations performed
on the whole data set, on resampled data sets with a varying
fraction of nodes removed, f, and on the reconstructed data sets
built using these various methods.

Uniformly resampled contact networks. Missing data are known
to affect the various properties of contact networks in different
ways. In particular, the number of neighbours (degree) of a node
decreases as the fraction f of removed nodes increases, since
removing nodes also removes links to these nodes. Under the

hypothesis of uniform sampling, the average degree hki becomes
(1� f)hki for the resampled network47. As a result, the density of
the resampled aggregated contact network, defined as the number
of links divided by the total number of possible links between the
nodes, does not depend on f. The same reasoning applies to the
density rAB of links between groups of nodes A and B, defined as
the number of links EAB between nodes of group A and nodes of
group B, normalised by the maximum possible number of such
links, nAnB, where nA is the number of nodes of group A (for
A¼B, the maximum possible number of links is nA(nA� 1)/2):
both the expected number of neighbours of group B for nodes of
group A (given by EAB/nA) and the number nB of nodes in group
B are indeed reduced by a factor (1� f), so that rAB remains
constant. This means that the link density contact matrix, which
gathers these densities and gives a measure of the interaction
between groups (here classes or departments), is stable under
uniform resampling. We illustrate these results on our empirical
data sets in Supplementary Figs 1–4 (see also Supplementary
Note 1). Table 2 and Supplementary Fig. 2 show in particular that
the similarities between the original and resampled matrices are
high for all data sets (Supplementary Figs 3–4 for the contact
matrices themselves).

Finally, the temporal statistics of the contact network are not
affected by population sampling, as noted in ref. 16 for other
data sets: the distributions of contact and inter-contact durations
(the inter-contact durations are the times between consecutive
contacts on a link), of number of contacts per link and of
cumulated contact durations (that is, of the link weights in the
aggregated network) do not change when the network is sampled
uniformly (Supplementary Fig. 1). For structured populations, an
interesting property is moreover illustrated in Supplementary
Figs 5–6: although the distributions of contact durations
occurring between members of the same group or between
individuals belonging to different groups are indistinguishable,
this is not the case for the distributions of the numbers of contacts
per link nor, as a consequence, for the distributions of cumulated
contact durations. In fact, both cumulated contact durations and
numbers of contacts per link are more broadly distributed for
links joining members of the same group. The figures show that
this property is stable under uniform resampling.

Despite the robustness of these properties, the outcome of
simulations of epidemic spread is strongly affected by the
resampling. As Fig. 1 illustrates, the probability of large outbreaks
in the SIR model decreases strongly as f increases and even
vanishes at large f. As mentioned above, such a result is expected,
since the removed nodes act as if they were immunised: sampling
hinders the propagation in simulations by removing transmission
routes between the remaining nodes. As a consequence, the
prevalence and the final size of the outbreaks are systematically
underestimated by simulations of the SIR model on the
resampled network with respect to simulations on the whole
data set (for the SIS model, the epidemic threshold is

Table 2 | Contact matrix similarities.

f InVS CML Thiers13 CML

10% 0.996 (0.937,0.999) 0.999 (0.998,0.999)
Resampled 20% 0.980 (0.889,0.994) 0.996 (0.995,0.997)

40% 0.925 (0.872,0.983) 0.988 (0.983,0.990)

10% 0.976 (0.846,0.995) 0.998 (0.994,0.999)
Reconstructed 20% 0.942 (0.844,0.984) 0.993 (0.985,0.995)

40% 0.890 (0.652,0.953) 0.977 (0.938,0.987)

Similarities between the original contact matrices and the contact matrices of the resampled networks (top) and of the reconstructed networks (bottom). Median and 90% confidence interval for the
cosine similarity between link density contact matrices (CML) for different values of f, the fraction of nodes removed from the original data. Values were obtained from 100 independent realisations of the
resampling and reconstruction procedures.
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overestimated): resampling leads overall to a systematic under-
estimation of the epidemic risk, and Fig. 1 illustrates the extent of
this underestimation.

Estimation of epidemic sizes. We now present a series of
methods to improve the estimation of the epidemic risk in
simulations of epidemic spread on temporal network data sets in
which nodes (individuals) are missing uniformly at random. Note
that we do not address here the problem of link prediction48 as
our aim is not to infer the missing contacts. The hierarchy of
methods we put forward uses increasing amounts of information
corresponding to increasing amounts of detail on the group and
temporal structure of the contact patterns, as measured in the
resampled network. We moreover assume that the timelines of
scheduled activity are known (that is, nights and weekends,
during which no contact occurs).

For each data set, considered as ground truth, we create
resampled data sets by removing at random a fraction f of the N
nodes. We then measure on each resampled data set a series of
statistics of the resulting contact network and construct
stochastic, surrogate versions of the missing part of the network
by creating for each missing node a surrogate instance of its links
and a synthetic timeline of contacts on each surrogate link, in the
different ways described below (Supplementary Methods and
Methods section for more details on their practical
implementation).

Method 0. The first effect of missing data is to decrease the
average degree of the aggregate contact network, while keeping its
density constant. Hence, the simplest approach is to merely
compensate this decrease. We therefore measure the density of
the resampled contact network rs, as well as the average aggregate
duration of the contacts, hwis. We then add back the missing
nodes and create surrogate links between these nodes and
between these nodes and the nodes of the resampled data set at
random, with the only constraint to keep the overall link density
fixed to rs. We attribute to each surrogate link the same weight
hwis and create for each link a timeline of randomly chosen
contact events of equal length Dt¼ 20 s (the temporal resolution
of the data set) whose total duration gives back hwis.

Method W. The heterogeneity of aggregated contact durations
is known to play a role in the spreading patterns of model
diseases4,20,22,49. We therefore refine Method 0 by collecting in
the resampled data the list {w} of aggregate contact durations, or
weights (W). We build the surrogate links and surrogate timelines
of contacts on each link as in Method 0, except that each
surrogate link carries a weight extracted at random from {w},
instead of the average hwis.

Method WS. The fact that the population is divided into
groups of individuals such as classes or departments can have a
strong impact on the structure of the contact network20,23 and on
spreading processes50. We thus measure the link density contact
matrix of the resampled data, and construct surrogate links in a
way to keep this matrix fixed (equal to the value measured in the
resampled data), in the spirit of stochastic block models with
fixed numbers of edges between blocks51. Moreover, we collect in
the resampled data two separate lists of aggregate contact
durations: {w}int gathers the weights of links between
individuals belonging to the same group, and {w}ext is built
with the weights of links joining individuals of different groups.
For each surrogate link, its weight is extracted at random either
from {w}int if it joins individuals of the same group or from {w}ext

if it associates individuals of different groups. Timelines are then
attributed to links as in W. This method assumes that the number
of missing nodes in each group is known, and preserves the group
structure (S) of the population.

Method WT. Several works have investigated how the temporal
characteristics of networks can slow down or accelerate spread-
ing25,30,52. To take these characteristics into account, we measure
in the resampled data the distributions of number of contacts per
link and of contact and inter-contact durations, in addition to the
global network density. We build surrogate links as in Method W,
and construct on each link a synthetic timeline in a way to respect
the measured temporal statistics (T) of contacts. More precisely,
we attribute at random a number of contacts (taken from the
measured distribution) to each surrogate link, and then alternate
contact and inter-contact durations taken at random from the
respective empirical distributions.

Method WST. This method conserves the distribution of link
weights (W), the group structure (S), and the temporal
characteristics of contacts (T): surrogate links are built and
weights assigned as in method WS, and contact timelines on each
link as in method WT.

Each of these methods uses a different amount of information
gathered from the resampled data. Methods 0, W and WT include
an increasing amount of detail on the temporal structure of
contacts: method 0 assumes homogeneity of aggregated contact
durations, while W takes into account their heterogeneity, and
WT reproduces heterogeneities of contact and inter-contact
durations. On the other hand, neither of these three methods
assume any knowledge of the population group structure. This
can be due either to an effective complete lack of knowledge
about the population structure, as in the SFHH data, or to the
lack of data on the repartition of the missing nodes in the groups.
Methods WS and WST on the other hand reproduce the group
structure as in a stochastic block model with fixed number of
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Figure 1 | SIR epidemic simulations on resampled contact networks. We plot the distributions of epidemic sizes (fraction of recovered individuals) at the

end of SIR processes simulated on top of resampled contact networks, for different values of the fraction f of nodes removed. The plot shows the

progressive disparition of large epidemic outbreaks as f increases. The parameters of the SIR models are b¼0.0004 and b/m¼ 1,000 (InVS) or b/m¼ 100

(Thiers13 and SFHH). The case f¼0 corresponds to simulations using the whole data set, that is, the reference case. For each value of f, 1,000 independent

simulations were performed.
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links within and between groups, and take into account the
difference between the distributions of numbers of contacts and
aggregate durations between individuals of the same or of
different groups. Indeed, links within groups correspond on
average to larger weights, as found empirically in ref. 50 and
discussed above (Supplementary Figs 5–6). Overall, method WST
is the one that uses most information measured in the resampled
data. Additional properties such as the transitivity–also stable
under resampling procedure, see Supplementary Fig. 7–can also
be measured in the resampled data and imposed in the
construction of surrogate links, as detailed in the
Supplementary Methods. This comes, however, at a strong
computational cost and we have verified that it does not impact
significantly our results, as shown in the Supplementary Fig. 8.

We check in Table 2, Supplementary Note 2 and
Supplementary Figs 9–14 that the statistical properties of the
resulting reconstructed (surrogate) networks, obtained by the
union of the resampled data and of the surrogate links, are similar
to the ones of the original data for the WST method. We
emphasise again that our aim is not to infer the true missing
contacts, so that we do not compare the detailed structures of the
surrogate and original contact networks.

Figures 2–4 display the outcome of SIR spreading simulations
performed on surrogate networks obtained using the various
reconstruction methods, compared with the outcome of simula-
tions on the resampled data sets, for various values of f. Method 0
leads to a clear overestimation of the outcome and does not
capture well the shape of the distribution of outbreak sizes.
Method W gives only slightly better results. The overall shape of
the distribution is better captured for the three reconstruction
methods using more information: WS, WT and WST (note that
for the SFHH case the population is not structured, so that W and
WS are equivalent, as are WT and WST). The WST method
matches best the shape of the distributions and yields distribu-
tions much more similar to those obtained by simulating on the
whole data set than the simulations performed on the resampled
networks. We also show in Fig. 5 the fraction of outbreaks that
reach at least 20% of the population and the average epidemic size
for these outbreaks. In the case of simulations performed on
resampled data, we rapidly lose information about the size and
even the existence of large outbreaks as f increases. Simulations
using data reconstructed with methods 0 and W, on the contrary,
largely overestimate these quantities, which is expected as
infections spread easier on random graphs than on structured
graphs50,52, especially if the heterogeneity of the aggregated
contact durations is not considered22,20. Taking into account the
population structure or using contact sequences that respect the
temporal heterogeneities (broad distributions of contact and
inter-contact durations) yield better results (WS and WT cases,
respectively). Overall, the WST method, for which the surrogate
networks respect all these constraints, yields the best results.

We show in the Supplementary Figs 15–18 that similar results
are obtained for different values of the spreading parameters.
Moreover, the phase diagram obtained for the SIS model when
using reconstructed networks is much closer to the original than
for resampled networks (Fig. 6 and Supplementary Figs 19–20).
Overall, simulations on networks reconstructed using the WST
method yield a much better estimation of the epidemic risk than
simulations using resampled network data, for both SIS and SIR
models.

Reshuffled data sets. Even when simulations are performed
on reconstructed contact patterns built with the WST method,
the maximal outbreak sizes are systematically overestimated
(Figs 2–4), as well as, in most cases, the probability and average

size of large outbreaks, especially for SFHH (Figs 4,5). These
discrepancies might stem from structural and/or temporal
correlations present in empirical contact data that are not taken
into account in our reconstruction methods. To test this
hypothesis, we construct several reshuffled data sets and use them
as initial data in our resampling and reconstruction procedure.
We use both structural and temporal reshuffling as described in
the Methods section, in order to remove either structural corre-
lations, temporal correlations, or both, from the original data sets.
We then proceed to a resampling and reconstruction procedure
(using the WST method) as for the original data, and perform
numerical simulations of SIR processes. As for the original data,
simulations on resampled data lead to a strong underestimation
of the process outcome, and simulations using the reconstructed
data gives much better results.

We show in the Supplementary Figs 21–22 that we still obtain
discrepancies, and in particular overestimations of the largest
epidemic sizes, when we use temporally reshuffled data in which
the link structure of the contact network is maintained. If on the
other hand we use data in which the network structure has been
reshuffled in a way to cancel structural correlations within each
group, the reconstruction procedure gives a very good agreement
between the distributions of epidemic sizes of original and
reconstructed data, as shown in Fig. 7. More precisely we consider
here ‘CM-shuffled’ data, that is, contact networks in which the
links have been reshuffled randomly but separately for each pair
of groups, that is, a link between an individual of group A and an
individual of group B is still between groups A and B in the
reshuffled network. The difference with the case of non-reshuffled
empirical data are particularly clear for the SFHH case. This
indicates that the overestimation observed in Figs 2–4 is mostly
due to the fact that the reconstructed data does not reproduce
small scale structures of the contact networks: such structures
might be owing to for example, groups of colleagues or friends,
whose composition is neither available as metadata nor detectable
in the resampled data sets.

Limitations. When the fraction f of nodes excluded by the
resampling procedure becomes large, the properties of the
resampled data may start to differ substantially from those of
the whole data set (Supplementary Figs 1–2). As a result, the
distributions of epidemic sizes of SIR simulations show stronger
deviations from those obtained on the whole data set (Fig. 8),
even if the epidemic risk evaluation is still better than for simu-
lations on the resampled networks (Fig. 5). Most importantly, the
information remaining in the resampled data at large f can be
insufficient to construct surrogate contacts. This happens in
particular if an entire class or department is absent from the
resampled data or if all the resampled nodes of a class/department
are disconnected (see Methods for details). We show in the
bottom plots of Fig. 5 the failure rate, that is, the fraction of cases
in which we are not able to construct surrogate networks from the
resampled data. It increases gradually with f for the InVS data
since the groups (departments) are of different sizes. For the
Thiers13 data, all classes are of similar sizes so that the failure rate
reaches abruptly a large value at a given value of f. For the SFHH
data, we can always construct surrogate networks as the popu-
lation is not structured. Another limitation of the reconstruction
method lies in the need to know the number of individuals
missing in each department or class. If these numbers are com-
pletely unknown, giving an estimation of outbreak sizes is
impossible as adding arbitrary numbers of nodes and links to the
resampled data can lead to arbitrarily large epidemics. The
methods are, however, still usable if only partial information is
available. For instance, if only the overall missing number of
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individuals is available, it is possible to use the WT method,
which still gives sensible results. Moreover, if f is only approxi-
mately known, for example, f is known to be within an interval of
possible values (f1, f2), it is possible to perform reconstructions
using the respective hypothesis f¼ f1 and f¼ f2 and to give an
interval of estimates. We provide an example of such procedure
in Supplementary Fig. 23.

Discussion
The understanding of epidemic spreading phenomena has
been vastly improved thanks to the use of data-driven

models at different scales. High-resolution contact data in
particular have been used to evaluate epidemic risk or
containment policies in specific populations or to perform
contact tracing14,19,20,28,29,31,32. In such studies, missing
data due to population sampling might represent, however,
a serious issue: individuals absent from a data set are equivalent
to immunised individuals when epidemic processes are
simulated. Feeding sampled data into data-driven models
can therefore lead to severe underestimations of the
epidemic risk and might even affect the evaluation of
mitigation strategies if for instance some at-risk groups are
particularly undersampled.
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Figure 2 | SIR simulations for the InVS workplace case. We compare of the outcome of SIR epidemic simulations performed on resampled and

reconstructed contact networks, for different methods of reconstruction. We plot the distribution of epidemic sizes (fraction of recovered individuals) at the

end of SIR processes simulated on top of resampled (sample) and reconstructed contact networks, for different values of the fraction f of nodes removed,
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Here we have put forward a set of methods to obtain a better
evaluation of the outcome of spreading simulations for data-
driven models using contact data from a uniformly sampled
population. To this aim, we have shown how it is possible,
starting from a data set describing the contacts of only a fraction
of the population of interest (uniformly sampled from the whole
population), to construct surrogate data sets using various
amounts of accessible information, that is, quantities measured
in the sampled data. We have shown that the simplest method,
which consists in simply compensating for the decrease in the
average number of neighbours due to sampling, yields a strong
overestimation of the epidemic risk. When additional

information describing the group structure and the temporal
properties of the data is added in the construction of surrogate
data sets, simulations of epidemic spreading on such surrogate
data yield results similar to those obtained on the complete data
set. We note here that the issue of how much information should
be included when constructing the surrogate data is linked to the
general issue of how much information is needed to get an
accurate picture of spreading processes on temporal net-
works22,27–29,53,54. Some discrepancies in the epidemic risk
estimation are, however, still observed, due in particular to
small scale structural correlations of the contact network that
are difficult or even impossible to measure in the resampled
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end of SIR processes simulated on top of resampled (sample) and reconstructed contact networks, for different values of the fraction f of nodes removed,

and for the five reconstruction methods described in the text (0, W, WS, WTand WST). The parameters of the SIR models are b¼0.0004 and b/m¼ 100.
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data: these discrepancies are indeed largely suppressed if we use
as original data a reshuffled contact network in which such
correlations are absent.

The methods presented here yield much better results than
simulations using resampled data, even when a substantial part of
the population is excluded, in particular in estimating the
probability of large outbreaks. It suffers, however, from limita-
tions, especially when the fraction f of excluded individuals is too
large. First, the construction of the surrogate contacts relies on the
stability of a set of quantities with respect to resampling, but the
measured quantities start to deviate from the original ones at
large f. The shape of the distribution of epidemic sizes may then
differ substantially from the original one. Second, large values of f
might even render the construction of the surrogate data
impossible due to the loss of information on whole categories
of nodes. Finally, at least an estimate of the number of missing
individuals in the population is needed in order to create a
surrogate data set.

An interesting avenue for future work concerns possible
improvements of the reconstruction methods, in particular by
integrating into the surrogate data additional information and
complex correlation patterns measured in the sampled data. For
instance, the number of contacts varies significantly with the time
of day in most contexts: the corresponding activity timeline might
be measured in the sampled data (overall or even for each group
of individuals), assumed to be robust to sampling and used in the
reconstruction of contact timelines. More systematically, it might
also be possible to use the temporal network decomposition
technique put forward in ref. 55, on the sampled data, to extract

mesostructures such as temporally localized mixing patterns. The
surrogate contacts could then be built in a way to preserve such
patterns. Indeed, correlations between structure and activity in
the temporal contact network are known to influence spreading
processes21,52,54,56–58 but are notoriously difficult to measure. If
the group structure of the population is unknown, recent
approaches based on stochastic block models59 might be used
to extract groups from the resampled data; this extracted group
structure could then be used to build the corresponding contact
matrix and surrogate data sets.

We finally recall that we have assumed an uniform sampling of
nodes, corresponding to an independent random choice of each
individual of the population to take part or not to the data
collection. Other types of sampling or data losses can, however,
also be present in data collected by wearable sensors, such as
partial coverage of the premises of interest by the measuring
infrastructure, non-uniform sampling depending on individual
activity (too busy persons or, on the contrary, asocial individuals,
might not want to wear sensors), on group membership, or due to
clusters of non-participating individuals (for example, groups of
friends). In addition, other types of data sets such as the ones
obtained from surveys or diaries correspond to different types of
sampling, as each respondent provides then information in the
form of an ego network60. Such data sets involve potentially
additional types of biases such as underreporting of the number
of contacts and overestimation of contact durations8,9,61: how to
adapt the methods presented here is an important issue that we
will examine in future work. Finally, the population under study
is (usually) not isolated from the external world, and it would be
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important to devise ways to include contacts with outsiders in the
data and simulations, for instance by using other data sources
such as surveys.

Methods
Data. We consider data sets collected using the SocioPatterns proximity sensing
platform (http://www.sociopatterns.org) based on wearable sensors that detect
close face-to-face proximity of individuals wearing them. Informed consent was
obtained from all participants and the French national bodies responsible for
ethics and privacy, the Commission Nationale de l0Informatique et des Libertés
(http://www.cnil.fr), approved the data collections.

The high school (Thiers13) data set61 is structured in nine classes, forming three
subgroups of three classes corresponding to their specialisation in Mathematics-
Physics (MP, MP*1, MP*2 with respectively 31, 29 and 38 students), Physics (PC,
PC*, PSI with respectively 44, 39 and 34 students), or Biology (2BIO1, 2BIO2 and
2BIO3 with respectively 37, 35 and 39 students).

The workplace (InVS) data set46 is structured in five departments: DISQ
(Scientific Direction, 15 persons), DMCT (Department of Chronic Diseases and
Traumatisms, 26 persons), DSE (Department of Health and Environment, 34
persons), SRH (Human Resources, 13 persons) and SFLE (Logistics, four persons).

For the conference data (SFHH), we do not have metadata on the participants,
and the aggregated network structure was found to be homogeneous22.

SIR and SIS simulations. Simulations of SIR and SIS processes on the temporal
networks of contacts (original, resampled or reconstructed) are performed using

the temporal Gillespie algorithm described in ref. 62. For each run of the
simulations, all nodes are initially susceptible; a node is chosen at random as the
seed of the epidemic and put in the infectious state at a point in time chosen at
random over the duration of the contact data. A susceptible node in contact with
an infectious node becomes infectious at rate b. Infectious nodes recover at rate m:
in the SIR model they then enter the recovered state and cannot become infectious
again, while in the SIS model they enter the susceptible state again. If needed, the
sequence of contacts is repeated in the simulation22.

For SIR processes, we run each simulation, with the seed node chosen at
random, until no infectious individual remains (nodes are thus either still
susceptible or have been infected and then recovered). We consider values of b and
m yielding a non-negligible epidemic risk, that is, such that a rather large fraction of
simulations lead to a final size larger than 20% of the population (Figs 1–4):
b¼ 4� 10� 4 s� 1, m¼ 4� 10� 7 s� 1 (InVS) or 4� 10� 6 s� 1 (SFHH and
Thiers13). Other parameter values are explored in the Supplementary Figs 15–18.
For each set of parameters, the distribution of epidemic sizes is obtained by
performing 1,000 simulations.

For SIS processes, simulations are performed using the quasi-stationary
approach of ref. 63. They are run until the system enters a stationary state as
witnessed by the mean number of infected nodes being constant over time.
Simulations are then continued for 50,000 time-steps while recording the number
of infected nodes. For each set of parameters, the simulations are performed once
with each node of the network chosen as the seed node.

Reconstruction algorithm. We consider a population P of N individuals,
potentially organised in groups. We assume that all the contacts occurring among a
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subpopulation ~P of these individuals, of size ~N ¼ 1� fð ÞN , are known. This
constitutes our resampled data from which we need to construct a surrogate set of
contacts concerning the remaining n¼N � ~N ¼ fN individuals for which no
contact information is available: these contacts can occur among these individuals
and between them and the members of ~P. We assume that we know the group of
each member of P n ~P, and the overall activity timeline, that is, the intervals during
which contacts take place, separated by nights and weekends.

To construct the surrogate data (WST method), we first compute from the
activity timeline the total duration Tu of the periods during which contacts can
occur.

Then, we measure in the sampled data:

� The density r of links in the aggregated contact network;
� A row-normalised contact matrix C, in which the element CAB gives the

probability for a node of group A to have a link to a node of group B;
� The list {tc} of contact durations;
� The lists {tic}int and {tic}ext of inter-contact durations for internal and external

links, that is, for links between nodes of the same group and links between nodes
that belong to two different groups, respectively;

� The lists {p}int and {p}ext of numbers of contacts per link, respectively for internal
(within groups) and external (between groups) links;

� The list {t0} of initial times between the start of the data set and the first contact
between two nodes.

Given r, we compute the number e of additional links needed to keep the
network density constant when we add the n excluded nodes. We then construct
each link according to the following procedure:

� A node i is randomly chosen from the set P n ~P of excluded nodes;
� Knowing the group A that i belongs to, we extract at random a target group B

with probability given by CAB;
� We draw a target node j at random from B (if B¼A, we take care that iaj) such

that i and j are not linked;
� Depending on whether i and j belong to the same group or not, we draw from

{p}int or {p}ext the number of contact events p taking place over the link ij;

� From {t0}, we draw the initial waiting time before the first contact;
� From {tc}, we draw p contact durations tkc , k¼ 1,?,p;
� From {tic}int or {tic}ext, we draw p� 1 inter-contact durations tmic , m¼ 1,?,

p � 1;
� If t0 þ

P
k t

k
c þ

P
m tmic 4Tu, we repeat the drawing of temporal characteristics

until we obtain a set of values such that t0 þ
P

k t
k
c þ

P
m tmic � Tu;

� From t0 and the tkc and tmic , we build the contact timeline of the link ij;
� Finally, we insert in the contact timeline the breaks defined by the global activity

timeline.

Possible failure of the reconstruction method at large f. The construction of the
surrogate version of the missing links uses as an input the group structure of the
subgraph that remains after sampling, as given by the contact matrix of the link
densities between the different groups of nodes that are present in the sub-
population ~P. Depending on the characteristics of ~P and of the corresponding
contacts, the construction method can fail in several cases: (i) if an entire group
(class/department) of nodes in the population is absent from ~P; (ii) if the
remaining nodes of a specific group (class/department) are all isolated in ~P’s
contact network; (iii) if, during the algorithm, a node of P n ~P is selected in a
certain group A but cannot create any more links because it already has links to all
nodes in the groups B such that CABa0; (iv) if there are either no internal (within
groups) or external (between groups) links in the contact network of ~P: in this case
one of the lists of link temporal characteristics is empty and the corresponding
structures cannot be reconstructed.

Cases (i) and (ii) correspond to a complete loss of information about the
connectivity of a group (class/department) of the population, due to sampling. It is
then impossible to reconstruct a sensible connectivity pattern for these nodes. Case
(iii) is more subtle and occurs in situations of very low connectivity between
groups. For instance, within the contact network of P, a group A has links only
with another specific group B, and both A and B are small; it is then possible that
the nodes of P n ~P

� �
\ A exhaust the set of possible links to nodes of B during the

reconstruction algorithm. If a node of P n ~P
� �

\ A is again chosen to create a link,
such a creation is not possible and the construction fails. Case (iv) usually
corresponds to situations in which the links between individuals of different groups
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which remain in the resampled data set correspond to pairs of individuals who
have had only one contact event: in such cases, {tic}ext is empty and external links
with more than one contact cannot be built.

Shufflings. To test the effect of correlations in the temporal network, we use four
shuffling methods, based on the ones defined in ref. 56.

Link shuffling. The contact timelines associated with each link are randomly
redistributed among the links. Correlations between timelines of links adjacent to a
given node are destroyed, as well as correlations between weights and topology.
The structure of the network is kept, as well as the global activity timeline.

Time shuffling. From the contact data we build the lists {tc}, {tic} and {p} of,
respectively, contact durations, inter-contact durations and number of contacts per
link. We also measure the list {t0} of initial times between the start of the data set
and the first contact between two nodes. For each link, we draw randomly a
starting time t0, a number p of contacts from {p}, p contact durations from {tc} and
p� 1 inter-contact durations from {tic}, so that the total duration of the timeline
does not exceed the total available time Tu. We then construct the contact
timelines, thus destroying the temporal correlations among contacts. The structure
of the network is instead kept fixed.

CM shuffling. We perform a link rewiring separately on each compartment of
the contact matrix, that is, we randomly redistribute links with their contact
timelines within each group, and within each pair of groups. We thus destroy the
structural correlations inside each compartment of the contact matrix, while
preserving the group structure of the network as given by the link density contact
matrix and the contact matrix of total contact times between groups.

CM-time shuffling. We perform both a CM shuffling and a time shuffling.
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46. Génois, M. et al. Data on face-to-face contacts in an office building suggest a
low-cost vaccination strategy based on community linkers. Netw. Sci. 3,
326–347 (2015).

47. Cohen, R., Erez, K., ben Avraham, D. & Havlin, S. Resilience of the Internet to
random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).

48. Liben-Nowell, D. & Kleinberg, J. The link-prediction problem for social
networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007).

49. Smieszek, T., Fiebig, L. & Scholz, R. Models of epidemics: when contact
repetition and clustering should be included. Theor. Biol. Med. Model 6, 11
(2009).

50. Onnela, J.-P. et al. Structure and tie strengths in mobile communication
networks. Proc. Natl Acad. Sci. USA 104, 7332–7336 (2007).

51. Peixoto, T. P. Entropy of stochastic blockmodel ensembles. Phys. Rev. E 85,
056122 (2012).

52. Karsai, M. et al. Small but slow world: How network topology and burstiness
slow down spreading. Phys. Rev. E 83, 025102 (2011).

53. Blower, S. & Go, M.-H. The importance of including dynamic social networks
when modeling epidemics of airborne infections: does increasing complexity
increase accuracy? BMC Med. 9, 88 (2011).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9860

12 NATURE COMMUNICATIONS | 6:8860 |DOI: 10.1038/ncomms9860 |www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://arxiv.org/abs/1411.7613
http://www.nature.com/naturecommunications


54. Pfitzner, R., Scholtes, I., Garas, A., Tessone, C. J. & Schweitzer, F. Betweenness
preference: Quantifying correlations in the topological dynamics of temporal
networks. Phys. Rev. Lett. 110, 198701 (2013).

55. Gauvin, L., Panisson, A. & Cattuto, C. Detecting the community structure and
activity patterns of temporal networks: a non-negative tensor factorization
approach. PLOS ONE 9, e86028 (2014).

56. Gauvin, L., Panisson, A., Cattuto, C. & Barrat, A. Activity clocks: spreading
dynamics on temporal networks of human contact. Sci. Rep. 3, 3099 (2013).

57. Scholtes, I. et al. Causality-driven slow-down and speed-up of diffusion in non-
markovian temporal networks. Nat. Commun. 5, 5024 (2014).

58. Gauvin, L., Panisson, A., Barrat, A. & Cattuto, C. Revealing latent factors of
temporal networks for mesoscale intervention in epidemic spread. Preprint at
http://arxiv.org/abs/1501.02758 (2015).

59. Peixoto, T. P. Inferring the mesoscale structure of layered, edge-valued and
time-varying networks. Phys. Rev. E 92, 042807 (2015).

60. Robins, G., Pattison, P. & Woolcock, J. Missing data in networks: exponential
random graph (p*) models for networks with non-respondents. Soc. Networks
26, 257–283 (2004).

61. Mastrandrea, R., Fournet, J. & Barrat, A. Contact patterns in a high school: A
comparison between data collected using wearable sensors, contact diaries and
friendship surveys. PLoS ONE 10, e0136497 (2015).

62. Vestergaard, C. L. & Génois, M. Temporal gillespie algorithm: Fast
simulation of contagion processes on time-varying networks. Preprint at
http://arxiv.org/abs/1504.01298v2 (2015).

63. Ferreira, S. C., Ferreira, R. S. & Pastor-Satorras, R. Quasistationary analysis of
the contact process on annealed scale-free networks. Phys. Rev. E. Stat. Nonlin.
Soft. Matter Phys. 83, 066113 (2011).

Acknowledgements
The present work is partially supported by the French ANR project HarMS-flu (ANR-12-
MONU-0018) to M.G. and A.B. by the EU FET project Multiplex 317532 to A.B., C.C.

and C.L.V. by the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the ‘Inves-
tissements d’Avenir’ French Government program, managed by the French National
Research Agency (ANR) to A.B. by the Lagrange Project of the ISI Foundation funded by
the CRT Foundation to C.C. and by the Q-ARACNE project funded by the Fondazione
Compagnia di San Paolo to C.C.

Author contributions
A.B. and C.C. designed and supervised the study. M.G., C.L.V., C.C. and A.B. collected
and post-processed the data, analyzed the data, carried out computer simulations and
prepared the figures. M.G., C.L.V., C.C. and A.B. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/
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