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Network analysis represents a valuable and flexible
framework to understand the structure of individual
interactions at the population level in animal societies.
The versatility of network representations is moreover
suited to different types of datasets describing
these interactions. However, depending on the data
collection method, different pictures of the social
bonds between individuals could a priori emerge.
Understanding how the data collection method
influences the description of the social structure of
a group is thus essential to assess the reliability
of social studies based on different types of data.
This is however rarely feasible, especially for animal
groups, where data collection is often challenging.
Here, we address this issue by comparing datasets
of interactions between primates collected through
two different methods: behavioural observations and
wearable proximity sensors. We show that, although
many directly observed interactions are not detected
by the sensors, the global pictures obtained when
aggregating the data to build interaction networks
turn out to be remarkably similar. Moreover, sensor
data yield a reliable social network over short time
scales and can be used for long-term studies, showing
their important potential for detailed studies of the
evolution of animal social groups.
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1. Introduction

Interactions between individuals are the foundation of complex social structures in human and
other animal societies. Network analysis represents a valuable framework to understand the
structure and evolution of these interactions as it encodes a whole hierarchy of patterns, from
individual-level interactions to complex population-level social structures [1-8].

With the increasing deployment of digital devices, new ways of collecting data, combined
with new network analysis tools, have made possible the development of quantitative measures
of these relationships and patterns in modern human societies, leading to the emergence of
computational social science over recent decades [9]. For instance, social relationships have been
inferred and studied using various data sources ranging from phone calls [10], e-mails [11,12] and
online interactions [13] to face-to-face interactions measured by wearable sensors [14—20].

The availability of large volumes of data with high temporal resolution has thus contributed
to the rapid expansion of data-driven computational studies of human relationships and human
social networks. In contrast, data collection remains more challenging in the field of animal
studies, because the data on animal interactions are still largely obtained from direct observations
[6,21]. Data resulting from such observations are extremely valuable as they often include detailed
information about the nature, duration and location of the interactions between individuals.
They thus allow researchers to grasp and investigate complex social patterns in animal groups.
Unfortunately, observations are costly in terms of time and, if they are not performed for a long
enough time per individual, they have a strong sampling effect [22]. Moreover, observations are
almost always biased to some extent because, for example, the visibility of animals is not uniform
and some interactions are more easily defined and recognized than others (e.g. [22]).

Recently, work has begun on adapting and implementing a number of technological
developments to gather high-resolution behavioural data on non-human animals, leading to
the adoption of the term reality mining, which is widely used in computational social sciences
for the study of human social behaviour and relations [23], for non-human animal societies
[24]. Machine-sensed data relating to the behaviour of animals can indeed now be collected
and, most importantly, analysed. We refer to [25] for an overview of the existing and emerging
technologies used to collect data on movements, behaviour and interactions within animal
groups. In particular, image-based tracking software and machine learning tools can be used to
identify and track animals and their trajectories from video data [26-29]. High-resolution GPS can
also be used to analyse animals’ relative movements: for instance, GPS tracking of wild baboons
revealed that a process of shared decision-making governs baboon movements [30]. Different
types of data can also be collected jointly (as in the sociometers deployed in human groups [31]);
for instance, GPS and audio recordings can be used to investigate the role of vocalization on the
cohesion of a group of animals [32].

These recent developments also include proximity logging technologies based on wearable
sensors, which are able to provide information either on the distance between the sensor and a
fixed receiver [33] or on the distance between two sensors [34-39]. These efforts have enabled
the collection of high-resolution datasets in various contexts. Using these techniques presents
a number of advantages. First, wearable sensors afford an objective and reliable definition of
contact as a proximity event. Second, all individuals equipped with a sensor are monitored
together, continuously and potentially for a long time without the need for constant human
supervision. This enables, in principle, the collection of large datasets covering long periods
of time and, consequently, makes it possible to investigate the evolution and stability of social
relationships and social groups on long time scales. On the other hand, wearable sensors
do not yield information on the type of behavioural interactions and they do not register
contacts with individuals not wearing any sensor, such as very young individuals or members
outside the group. The quality of the collected data might also depend on infrastructure
constraints and potential technical failures, so that sampling issues must also be considered
carefully [20,40].
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Thus, data obtained from direct observations and from wearable sensor infrastructures
have very different natures and could, in principle, lead to very different descriptions and
understanding of the social bonds between individuals and of the resulting social networks
[41,42].

It is therefore essential to assess the reliability of the outcomes of social studies to understand
the extent to which the way of collecting data influences the final image of the social network,
which elements affect this result and how this result is affected. Owing to the difficulty in
collecting data using different methods at the same time and in the same population, few
studies have been able to address these issues. In human groups, for instance, comparisons
between contacts registered by wearable sensors and in diaries have shown both similarities
and differences between the data collected by these two methods. In particular, many contacts
registered by sensors are not reported in surveys, especially for short contacts, while long contacts
are better reported [43—45]. Comparisons between sensors and direct observations or videos have
yielded mixed results [46,47]. Among animals, different types of networks built from the same
dataset of direct observations have been shown to differ [41,42], while a social network deduced
from co-presence in cognitive testing booths has been shown to correlate with that obtained from
directly observed interactions [48,49]. However, we are not aware of studies using data collected
in the same population with, on the one hand, wearable sensors and, on the other hand, direct
observations.

Here, we address this issue by collecting, describing, analysing and comparing two datasets
based on dyadic interactions between individuals belonging to a group of Guinea baboons (Papio
papio). The data span a time window of almost one month between June and July 2019 and
were collected through two different methods: (i) behavioural observations by trained human
observers and (ii) an infrastructure based on wearable sensors (see http:/ /www.sociopatterns.
org/).

For these two datasets, we first test the agreement between observations and the sensor data
at the level of single events: we systematically check whether an observed interaction was also
registered by the sensors. Overall, only a limited fraction of observed interaction events were
registered, with strong fluctuations depending on the day of observation and type of behaviour.
However, and despite this poor agreement at the level of single events, we show that the time-
aggregated networks, and hence the pictures of the group social structure, are remarkably similar.

Finally, we analyse the amount of time that it takes using each data collection method to
obtain a robust social network, by comparing the social networks obtained using different time
aggregation windows. Strikingly, the social network obtained with just 1 day of sensor data
is very similar to that based on aggregation over one whole month of data. Comparatively,
the network obtained from observations fluctuates more between short and long aggregation
windows because of stronger sampling effects. This shows the potential of wearable sensor
infrastructures to detect changes in a social group organization on short time scales and to also
monitor its long-term evolution.

2. Methods

(a) System setting and data collection

Data collection involved a group of captive Guinea baboons living in an enclosure at the CNRS
Primate Center in Rousset-sur-Arc (France). The entire group consisted of 19 individuals (seven
males and 12 females) aged from 1 to 23 years old.

(i) Behavioural observations

The behavioural observations were recorded between 13 June and 10 July 2019 using the
focal-sampling method [50]. Observations were carried out for 5 days a week (from Monday
to Friday) for a total of 20 days, with two sessions of approximately 2h a day at different
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Figure 1. (a) Individuals in the enclosure, wearing collars with the attached boxes containing the tags. (b) Interior of a single
box containing the tag (top) and the connected battery (bottom). (Online version in colour.)

times each day, ranging from 08.00 to 17.00. During each session, a trained observer focused
on each individual for a period of 5min and recorded its behaviours. The order in which
the different individuals were observed was changed at each session. Fifteen behavioural
categories corresponding to social interactions were recorded, namely: ‘grooming’, ‘presenting’
(greeting), ‘playing with’, ‘grunting-lipsmacking’, ‘supplanting’, ‘threatening’, ‘submission’,
‘touching’, ‘avoiding’, ‘attacking’, ‘carrying’, ‘embracing’, ‘mounting’, ‘copulating’, ‘chasing’ (see
the electronic supplementary material for details). Another behaviour of interest was ‘resting’.
Resting is often considered as a behaviour performed in isolation, i.e. it does not correspond to
an interaction between individuals. In some cases, however, when two or more individuals were
resting together at less than 1 m from each other, this was considered as ‘social resting” and also
counted as an interaction. ‘Resting’, ‘grooming” and ‘playing with” include a duration and are
called state events. The other types of behaviour do not have a duration assigned to them and are
called point events. For each observed behaviour, the individuals involved were recorded as well
as the start and end time of each state event; for each point event, the time at which it took place
was also recorded.

In addition, two categories were included, namely ‘invisible” and ‘other’, to refer to those cases
in which the individual was not seen by the observer or the behaviour was not included among
those listed above, respectively.

(ii) Wearable sensor data

A subgroup of 13 baboons, consisting only of juveniles and adults (all individuals at least 6
years old), were fitted with leather collars. Attached to the collars were wearable proximity
sensors (radio-frequency identification (RFID) tags) developed by the SocioPatterns collaboration
(http:/ /www.sociopatterns.org/); these sensors have been used in many studies involving
humans [14,16,18,20,40,44,51], and have recently also been used in animals [39]. In our setting,
each sensor was secured in a customized box specially designed and produced using a three-
dimensional printer to contain the sensor with a long-life battery connected to it. The boxes were
positioned on the front side of the individuals (figure 1).

The sensors exchanged low-power radio packets in a peer-to-peer fashion. Owing to the very
low power used, the reception by the sensor of an individual A of a radio packet emitted by
the sensor of another individual B was a good proxy for the close proximity (approx. less than
1.5m) of individuals A and B [14]. Moreover, the radio frequency emitted by the RFID tags was
absorbed by body water, so the radio packets tended to propagate mostly towards the front
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of the individual wearing the device. The packet exchange rate thus depended on the mutual
orientation of the individuals and the infrastructure detected mainly face-to-face contacts. The
detected spatial proximity relations were relayed from RFID tags to radio receivers (RFID readers)
that were installed around the enclosure and connected to a local area network (LAN). A central
server received the data, time stamping and storing each event.

Data were finally aggregated with a temporal resolution of 20's (for more details see [14]): we
thus defined two individuals to be in contact during a 20 s time window if their sensors exchanged
at least one packet during that interval, and the contact event was considered over when the
sensors did not exchange packets over a 20s interval.

In the following, we will refer to the observed behaviours corresponding to interactions as
‘interactions’ or ‘observed interactions’, and to the contacts collected by the sensors as ‘contacts’
or ‘contact events’.

For the first 10 days of data collection (13-23 June) only two readers were installed around the
enclosure, whereas in the successive days a third reader was added to ensure better coverage.
Data collection went on even after the observation period was over and is on-going at the time
of writing of this paper. We consider here mainly the data collected between 13 June and 10 July
2019, i.e. during the period of the observations; we also use the data collected afterwards and
until 27 August to assess stability over longer time scales.

(b) Data analysis

(i) Comparison of the two datasets at the level of single events

We compute the fraction of observed interactions that were also detected by the wearable sensor
infrastructure as follows. Each observed interaction event involves two individuals i and j and
is assigned a time ¢ (for point events) or an interval [fstart, tstop] (for state events), with tsart and
tstop the times of the beginning and end of the interaction, respectively. Note that the observed
interactions are often directed, with an actor individual and a recipient individual. However, since
the proximity events registered by the wearable sensors are not directed, we consider undirected
versions of the behavioural data (i.e. the direction of the interaction is not taken into account).

An observed interaction event is then considered as tracked if at least one RFID packet was
exchanged between the sensors of individuals i and j within the time window [t — At,t 4+ At] or
[tstart — At, teng + At], for point and state events, respectively, where At is a tolerance interval.
This tolerance is introduced to take into account three elements: (i) the potential delay of the
observer in reporting the interaction with respect to its actual occurrence; (ii) the 20s time
aggregation of the RFID sensor data; and (iii) possible asynchrony between the time on the
observer’s tablet computer on which observed interactions were registered and the time on the
computer storing the sensor data.

Obviously, to compute the fraction of tracked interaction events, we only consider observed
events involving two individuals wearing sensors.

(ii) Comparison of the resulting aggregated networks

For each dataset, we can construct on any temporal window an aggregated network in which
nodes represent individuals and weighted links give a summary of the recorded contacts or
observed interactions during that time window. We first consider the time window as being
the whole period during which observations were carried out, and we restrict the observational
data to the 13 individuals with collars and sensors. We thus obtain a ‘contact network” from the
wearable sensor data and an “interaction network” from the observed interactions, both covering
the period from 27 June to 10 July 2019. Both networks are undirected and weighted.

In the aggregated interaction network, a weighted link between nodes i and j is drawn if at least
one interaction was observed between i and j during the aggregation time window. The weight
wlg) of the link between individuals i and j is given by the total number of interaction events
recorded between i and j during this time. Note that we use here the number of interactions and
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not their total duration in order to also account for point events. Similarly, in the contact network,
a link was drawn between i and j if at least one contact was recorded between them by the sensor
infrastructure, and the corresponding weight w( i
the sensors between i and ;.

We compare the contact and interaction networks using several metrics. We computed the
Pearson’s and Kendall’s v correlation coefficients between the two lists of weights; these are,
respectively, the linear correlation and the similarity of the orderings of the weights in the two
networks. We also considered two different versions of cosine similarity measures between the
network weights. A cosine similarity measure is in general defined between two vectors, and is
bounded between —1 and +1. It takes the value +1 if the vectors are proportional with a positive
proportionality constant, a value of —1 if the proportionality constant is negative, and 0 if they are
perpendicular. For positive weights, as in our case, it is bounded between 0 and +1. We consider
first a global cosine similarity (GCS) measure between the two networks as the cosine similarity
between the two vectors formed by the list of all link weights in each network (using a weight 0
if a link is not present),

is given by the number of contacts recorded by

C
ZDJ w)

\/Zz>] \/Zz>] <C>

We moreover consider local versions of the cosine similarity: the local cosine similarity (LCS) of a
node i is given by the cosine similarity between the vectors of weights involving i in each network,

5 o 1>w<C>
LCS; (i) = 2.2)

\/Z, 0 \/Z] <c>

LCS (i) is thus equal to 1 if i has been detected as being linked with the same individuals in the
two datasets with proportional weights.

It is equal to 0 if i has disjoint sets of neighbours in the two networks. Here, we use the average
LCS value over all individuals as a measure of similarity between the two networks.

To get a better grasp of the values obtained, we consider a null model in which the weights
are reshuffled among the links for one of the networks. We perform 1000 realizations of this
reshuffling and recompute the values of correlations and similarities in each realization, obtaining
a null distribution for each measure.

GCSjc = (2.1)

(iii) Other aggregation time scales: fluctuations and convergence

For each dataset, the aggregation procedure yielding an aggregated network can be performed
on any time window. In addition to the whole observation time window, we consider shorter
time windows of 1 day, 3 days and one week. We then study the stability and dynamics of each
network by computing for each dataset the cosine similarities between the networks aggregated
on all pairs of time window (with a given length). For instance, if we consider two different time
periods t; and tp, we denote by w(] ") and w(]I ") the weights of the links between individuals i
and j in the interaction networks aggregated over t; and #,, respectively, and the LCS of i in the
interaction network between t1 and f, is

(Lt) (L)
D (2.3)

Lt Lt
\/Z] 0 \/2] wlt 2)

Local and global cosine similarities can be defined in the same way for each dataset, and can
also be defined between networks aggregated on time windows of different lengths. We compute
for each dataset similarities between the network aggregated on the whole observation time
window and networks aggregated on the first n days of observations, in order to understand
how fast the weight structure of each network converges to its fully aggregated version.

LCSy 1, () =
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3. Results

(a) Single interaction and contact events
(i) Behavioural data

The total number of behaviours recorded for the entire group of 19 individuals is 5377. From
this full dataset of observations we keep just those behaviours involving the 13 individuals that
were wearing collars with sensors. Among the 995 observed interactions in this juvenile/adult
subgroup, 944 (approx. 95%) are affiliative social behaviours (grooming, resting, presenting,
grunting-lipsmacking, touching, mounting, embracing, playing with), which are the most
relevant to this study. Moreover, grooming and (social) resting represent more than 98% of the
state events and approximately 65% of the total.

Figure 2 represents the distributions of durations for the observed interactions (i.e. with
associated duration) both for the subgroup of collared individuals and for the whole group, which
includes very young juveniles and babies. Durations cover a broad range of values with a cut-off
point at 300 s (5 min) corresponding to the duration of the focal observation (i.e. some interactions
lasted more than 300 s but their total duration is unknown). We also note that the distributions of
events concerning the whole group or only the collared individuals have similar shapes; however,
these have a larger fraction of short interactions when babies are included.

(ii) Contacts registered by the sensors

During the period in which observations were carried out, 31783 contact events were recorded
among the 13 individuals. Of these, 4823 (15% of the total) were recorded during the periods of
behavioural observations. The number of contacts per day was approximately 1135 on average
and ranged from 754 (28 June) to 1768 (13 June) for a total duration of 1259500 (349 h). Contact
durations varied across a very broad range: most contacts were short, with an average duration
of 39.6s, and 95% of the contacts lasted less than 2 min, but contacts as long as 1520s (approx.
25min) were recorded, and the contact durations form a continuous distribution spanning all
values in between (figure 2), as observed in many different contexts for human and animal groups
[14,15,18,20,39,44]. In fact, we report on the same graph the statistics of the contact durations
measured by wearable sensors between students in a school, reported in [19] and freely accessible:
it turns out that the distributions of contact durations of baboons and of humans are indeed
very similar.

(iii) Comparing interactions and contacts

Figure 2 compares the distributions of durations of the observed interactions and of the contacts
registered by the sensor infrastructure. Although they differ, with, in particular, the distribution
extending to much larger values for the contacts, they are both broad and span a large range of
values. The limited range of the interaction durations is due to the observational protocol, since
all durations above 300s are cut off at that value. In addition, the duration of an interaction is
necessarily underestimated if it starts before the beginning of a given 5min observation time
window, or if it terminates after the end of the time window: this biases the resulting distribution
of durations in a complex way. Overall, it seems possible that the two distributions would have
similar slopes at large durations if this cut-off were not enforced, although a detailed study of the
effect of the cut-off is beyond the scope of this work.

To go beyond this statistical comparison, we perform a detailed matching procedure, as
described in the Methods, between each single observed interaction (in the behavioural data)
and the contact events (obtained from the sensors data). Table 1 gives the results of this matching,
for different categories of interactions and different values of the tolerance At. The fraction of
observed interactions finding a match in the sensor data is quite low, with a slightly better
performance when the tolerance is increased. For At =20s, on average only one-third of the
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Figure 2. Durations of contacts and observed interactions. Distributions of durations for: contacts detected by the wearable
sensor infrastructure (blue dots; average = 39.6 5,5.d. = 52.7 5, median = 20.0 s, max = 1520 s); contacts between students
in a school in Utah (USA) measured by an infrastructure based on wireless ranging-enabled nodes (WRENs) [19] (orange
triangles; average = 39.6 5, 5.d. = 72.8 s, median = 19.5 s, max = 3164 s); state events in observed interactions (green stars
for interactions involving only the 13 individuals with collars; average = 8135, 5.d. = 90.3 s, median = 41.0's, max = 300's;
magenta diamonds for all interactions; average = 43.8 s, s.d. = 64.6 5, median = 18.0' s, max = 300 s). Note that, according
to the observational method used in this study, individuals are observed for 5 min (300 ) at a time. The peak value at 300 s for
the observation data is therefore an artefact of the observation method. (Online version in colour.)

Table 1. Fractions of observed interactions with a corresponding match in the sensor data. We consider an interaction to have
a match in the contact data if the pair of individuals involved in the interaction appear in the sensor data in the same time
window £ At (see Methods). We report the overall fraction of matched interactions (first row), the average fraction over the
days (second row) with the corresponding standard deviation (third row), and the minimum and the maximum (fourth and fifth
row) fractions of tracked interactions over the different days. The values were computed for different delay parameters At, and
considering either all interactions, only state events (i.e. interactions with duration), only grooming events or only greeting
events.

all interactions state events grooming presenting (greeting)

observed interactions appear in the data obtained from the sensor infrastructure. The fraction
is lower for very short events such as greetings but notably larger if we consider only grooming
events, which are known to be very important socially [52]. We note that in this case the fraction of
tracked observed interactions is about 50%, a value very close to that obtained recently in [47] in
a comparison between the contacts among human individuals as observed in an annotated video
and as registered by wearable sensors.

We finally note that we can consider the reverse procedure that is, considering the contacts
registered by the sensors as the ground truth. To this aim, we restrict the sensor contact data to the
time windows corresponding to the behavioural observation periods: only 6.63% of these contacts
were recorded by the observer as interactions. Note that this small number is not surprising, as
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Figure 3. Distributions of weights. Probability distributions of interaction (a) and contact (b) network weights. Despite the very
different values of the weights, their distributions have similar shapes. In (c) and (d), the same distributions are shown after
rescaling the weights of each network by either the maximum weight (c) or the average weight (d). (Online version in colour.)

the observer focuses on one individual at a time, while the sensor infrastructure registers contacts
among all collared individuals during the same time window.

(b) Comparing interaction and contact networks

Both interaction and contact networks, obtained from the aggregation over the whole period of
observation, are very dense, with, respectively, 70 and 78 links (in particular, the contact network
is fully connected, i.e. with at least one contact registered within all pairs of individuals).

The two networks have by nature widely different weights, owing to the differences in the
methods of measurement. In particular, the number of observed interactions is strongly limited
by the amount of time dedicated to the observation of each individual. As a result, the number of
observed interactions between a given pair of individuals is at most of a few tens. On the other
hand, sensors are active at all times and the weights of the contact network span several orders of
magnitude, as is common in such datasets [14]. Despite these differences in the range of weights of
the two networks, figure 3 shows that the statistical distributions in fact have very similar shapes.

In addition, figure 4 shows the two weighted networks in which the weights have been
rescaled to have comparable widths. This figure highlights some important similarities in
the structure of the strong links of both networks: relevant examples include the links
Kali-Pipo (female-male) and Angele-Felipe (female-male), as well as the triad Atmosphere—
Harlem-Violette (female—male—female) with two similarly strong links Atmosphere-Harlem and
Harlem-Violette, and a very weak link Atmosphere-Violette.

To go further, we present in table 2 a systematic comparison of the strongest links in both
networks. The table reports the lists of the 10 strongest links in each network. The two strongest
links are the same in both networks, and more than half (6/10) of these links appear in both the
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Figure 4. Visualization graphs realized with Gephi software (www.gephi.org; see also [53]) of the interaction network (a) and
the contact network (b), aggregated over the entire observation period. The thickness of the lines is proportional to the weights
of the links (scaled in order to have comparable link widths in both networks). The figure shows in a qualitative way the high
resemblance between the patterns of strong and weak links of the two networks. (Online version in colour.)

Table 2. Top 10 strongest links. For each network, links are ordered based on their weights, from the strongest to the weakest.
The links in italics are those present in both top 10 rankings.

rank interaction network (observations) contacts network (sensors data)

interaction and contact networks. The links that are among the top 10 of one network but not
of the other are moreover within the top 20 strongest links of the other network, except for one.
The exception is the only link between two adult males appearing in table 2, namely the link
Bobo-Pipo, ranked eighth for the interaction network but only 55th for the contact network. The
interactions between adult males are usually short greetings (presenting), which are not face to
face but face to rear (see the description of behaviours in the electronic supplementary material),
making this interaction harder for the sensors to detect. We checked that this was indeed the case
for the Bobo—Pipo link, with almost only greetings and other point events (92%).

Finally, as described in the Methods, we use four different indicators to give a quantitative
estimation of the similarity between the networks. Each indicator is computed for the two
empirical networks and for 1000 realizations of the null model described in the Methods, and
we compare in figure 5 the empirical value and the distribution of values obtained with the null
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Figure 5. Similarity metrics. Quantitative comparison between the contact network and the interaction network through
several correlation and similarity measures. In each panel, the empirical value is presented as a vertical red line, together with
the distribution of 1000 values (light blue) obtained using a null model in which the weights of the contact network were
reshuffled and reassigned at random to the links. (a) Average of the LCS, i.e. average of the cosine similarity between the ego-
networks of single nodes (empirical value: 0.91, distribution: average = 0.4, s.d. = 0.06). (b) GCS between the lists of weights
of the two networks (empirical value: 0.84, distribution: average = 0.33, s.d. = 0.08). (c) Kendall rank correlation coefficient
between the weights of the two networks (empirical value: 0.58, distribution: average = —0.004, s.d. = 0.080). (d) Pearson
correlation coefficient between the weights (empirical value: 0.80, distribution: average = 0.04, s.d. = 0.11). (Online version
in colour.)

model. The GCS and average LCS are extremely high (close to 0.9), as is the Pearson correlation
coefficient (0.83), while the Kendall rank correlation coefficient is still large (0.58) but is more
impacted by the large number of links with low weights, whose order is expected to be less
stable than that of the strong links. In all cases, the empirical values lie far above any value
obtained in the null model realizations, as can be clearly seen in the figure (see also the electronic
supplementary material for a scatterplot of the weights of the links in the two networks and for
the values of the LCS of each individual).

(c) Other aggregation time scales

As described in the Methods, we also considered other time scales on which to aggregate the data
coming from the observations and from the sensor infrastructure. Indeed, the time constraint
of observational measures implies that the amount of information concerning each individual
per day is relatively small. Building a reliable picture of the social bonds between individuals
thus requires many days of observation and an aggregation window of one month is usually
advocated [22,48]. In the case of data collected through wearable sensors, on the other hand, a
large number of contacts is recorded after only a few hours. However, it is a priori unclear whether
the structures present on short time scales such as 1 day of data fluctuate from day to day or are

Downloaded from http://royalsocietypublishing.org/rspa/article-pdf/doi/10.1098/rspa.2019.0737/636823/rspa.2019.0737 .pdf

by guest

on 08 December 2025

16106107 :9Lb ¥ 905 "y 01 edsy/jeunol/Bio'Buysiqndiraposjefos



(@) I

. . | .
0.8 .
0.6 .
0.4 - 0.4
0.2 0.2
0
1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10
time span time span

—_
o —_
=] (=]

time span
w e w [

(=)}

time span

=R N B Y N
=}
=

~
—_
(=}

Figure 6. Cosine similarities between 3 day networks. Colour-coded matrices of average LCS values between every couple of
(a) 3 day interaction networks (min = 0.52; mean = 0.63) and (b) 3 day contact networks (min = 0.75; mean = 0.89).
A smaller number of snapshots is obtained for the interaction network because no observations were carried out on Saturdays
or Sundays. (Online version in colour.)

stable and already representative of the group social structure and of its strong links. Indeed, the
structures present in the monthly aggregated network might result either from a superposition
of different daily networks or, on the contrary, from the repetition of the same contact network
every day.

To investigate this issue, we compute the aggregated interaction and contact networks over
different time scales (1 day, 3 days, one week), obtaining in each case series of successive
snapshots corresponding to the interactions observed or to the contacts measured in successive
time windows. For each type of network, we compute the cosine similarities (local and global)
between each couple of snapshots to determine how stable the networks are, once aggregated on
such time scales. We show in figure 6 the resulting colour-coded matrices for the average LCS: the
values obtained for the interaction network are much lower than for the contact network, showing
that the former fluctuates much more than the latter. We show in the electronic supplementary
material that the interaction networks aggregated at daily scale are even more fluctuating, and
that important differences are measured even between weekly aggregated successive networks.
On the other hand, daily networks obtained from sensor data are already quite stable.

We then build interaction and contact networks on time windows of increasing lengths,
starting from the beginning of the observations (using only the first day of data, then the first
2 days and so on), and comparing them with the aggregated network based on the whole
observation time window. Figure 7 shows the resulting GCS and average LCS as a function of the
length of the time window considered. The obtained similarities are already close to 1 when only
1 day of sensor data is used (GCS=0.93, average LCS =0.90), and remain at high values for
longer time windows. In fact, the inset shows that similarity values rise above 0.8 as soon as about
10-12h of data are collected. Comparatively, the similarities to the final aggregated network
increase much more slowly for the interaction data than for the contact data. For instance, the
1 day interaction network has much less similarity to the monthly one (GCS=0.68, average
LCS = 0.58). However, they reach very high values after only 9-10 days of observation.

Finally, to illustrate the possibility of exploring long time scales using the sensor infrastructure,
we consider the data collected after the observation period was over. Figure 8 shows the GCS and
average LCS between networks aggregated on weekly time scales, from 13 June to 27 August
2019. The picture emerging from figure 8 is one of a very stable network, with average similarity
values of 0.89 and 0.87 for the average LCS and for the GCS, respectively. Note that the minima
of the similarities between weekly networks (0.75 and 0.61) are observed for the week 18-25 July,
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Figure 7. Global and average local similarities between the networks aggregated on the whole period of observation and
networks aggregated on shorter time windows. (a) Interaction networks and (b) contact networks. (Online version in colour.)
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Figure 8. Stability of weekly aggregated contact networks on long time scales. Colour-coded matrices of the average LCS values
(a) and GCS values (b) for all pairs of weekly contact networks from 13 June to 27 August. (Online version in colour.)

in which the infrastructure actually failed for a couple of days, resulting in data loss for 20 and
21 July.

4. Discussion

In this paper, we have analysed and compared datasets describing social relationships in a group
of non-human primates, collected through two different methods: behavioural observations
and wearable proximity sensors. Sensor and behavioural observation methods have different
advantages and limitations that influence their ability to detect contacts and interactions between
individuals. On the one hand, observational methods provide high-quality data, through which
we can distinguish different behaviours and describe in depth social relationships between
individuals. However, the data have several sampling issues: only a limited amount of time
can be spent observing each individual, and data may be completely absent on certain days for
logistical reasons (Saturdays and Sundays in our case). Biases related to the observation technique
can also occur and are difficult to estimate. The cut-off on the duration of each individual
observation leads moreover to an underestimation of the duration of long interactions, which
can be particularly important when determining the social structure of a group. Finally, the total
duration of the observation period is usually limited to a few weeks and the group cannot be
monitored continuously on very long time scales, for clear practical reasons.
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On the other hand, sensors provide a large amount of data in a continuous manner, with a high
temporal resolution and potentially on very long time scales. However, the advantage of having
an objective definition of a contact as an exchange of radio packets between sensors is at the same
time a limitation since no information on the behaviour of the individuals in contact is available.
In particular, it is not possible to distinguish affiliative behaviours from antagonistic ones, and
it is therefore not possible to determine the dominance hierarchy using only wearable proximity
sensors. Moreover, two types of sampling biases need to be mentioned. First, the directionality
of the sensors limits the detection to approximately face-to-face interactions, while some social
interactions between primates (in particular, greetings or social resting) occur when individuals
have different mutual orientations. Second, individuals not wearing the sensors are by definition
absent from the data. In the case of human populations, it has been shown that a uniform
population sampling does not alter the statistical properties of the contact network between
individuals [20]. However, the absence of data concerning a specific subgroup of individuals with
behavioural patterns different from the rest of the group (such as all the individuals less than 6
years old, in our case) is a clear limitation. Another difficulty could also come from data losses
whenever a part of the infrastructure fails. We show, however, in the electronic supplementary
material by simulating the failure of a reader that the structure of the social network deduced
from the sensor data remains very stable even when the amount of data lost is important.

We have performed a comparison of the two datasets at various levels of detail. At the most
detailed level, we have checked for each observed interaction whether a contact was registered
by the sensors at the same time. This matching turns out to be very limited: about one-third
of the observed interactions were also recorded by the sensors, but this amount fluctuates and
depends strongly on the type of interaction. In particular, for interactions that tend to last,
such as grooming, the percentage of tracked events rises to approximately 50% and is above
approximately 80% on some days of observations. This is particularly important as grooming
behaviour is for primates one of the core social interactions, allowing the social structure of
the group to be defined [52]. For short and elusive interactions instead, such as greeting, this
percentage is only approximately 20%, which can be explained by the fact that greetings among
baboons are most often not face-to-face interactions. Notably, our results are in line with [47],
where the correspondence was examined between data collected by wearable sensors and a video
of the same interactions, yielding a sensitivity of 50% (about half of the interactions annotated on
the video were present in the wearable sensor data).

Although this limited correspondence between the two methods of measuring interactions
could be seen as a negative result, it is striking that, when considering the global social structure
extracted from the data, the results of the two methods are in fact strikingly similar. First, at a
statistical level, the distributions of event durations are broad in both cases, with most events
having a short duration, and a continuously decreasing distribution with no cut-off except the
one imposed by the procedure. The distributions of weights (number of events between two
individuals) are also very similar. Most importantly, the networks aggregated over the whole
observation period turn out to be extremely similar as measured by several metrics: the weights
of a link joining two individuals are highly correlated in the two networks, the top-ranked links
and the strong structures are preserved. Overall, the pictures of the social network provided by
the two measurement systems are thus extremely similar, despite the discrepancies observed at
the very detailed level. We note that this result is at odds with the analysis of [41], in which an
interaction network and a proximity network, built from the same set of direct observations of
baboons, were shown to differ. However, our infrastructure detects very close proximity, which
would be allowed only between animals sharing a certain level of trust, while the proximity
criterion used by Castles et al. [41] was of 5 or 10 m, thus not corresponding to a ‘contact’ between
individuals.

Moreover, we have built aggregated networks at shorter time scales and investigated how
quickly a reliable network could be obtained in each case. The observation network fluctuates
strongly from day to day. It yields a very similar picture with respect to the whole observation
period after about 10 days of observation. This is in agreement with recent results showing that
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limited amounts of observational data were enough to obtain a clear picture of the social structure
of the group [22]. Comparatively, the structure of the aggregated network obtained with the
sensors is already very stable at short time scales, and we obtain a reliable network structure
very similar to the one aggregated over one month even with only 1 day of data. This implies
that the sensor data would potentially allow us to pinpoint a change in the structure of the social
network of the group on much shorter time scales than with observational data. Moreover, we
have actually deployed the sensor infrastructure on much longer time scales with no interruption
(currently up to six months), while continuous observations cannot be carried out realistically on
such time scales.

5. Conclusion

Collecting and analysing data coming from digital devices to evaluate social patterns has become
quite common in human social studies. Recently, new infrastructures and protocols based on
sensors have also become more easily available for the study of animal groups as an alternative
to traditional data collection methods such as behavioural observations. In particular, we have
shown the potential of the sensor infrastructure used here, which detects close proximity between
individuals, to enable an automatic, less costly, long-term and reliable data collection that yields
a picture of the social interactions very similar to the one obtained from direct observations,
despite not registering all observed interactions and not distinguishing between different types
of behaviours. Such techniques could thus facilitate animal social network analysis and most
importantly make accessible both short and long time scales for the investigation of the dynamical
evolution of animal social networks [54].
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