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The relative contribution of close-proximity
contacts, shared classroom exposure and
indoor air quality to respiratory virus
transmission in schools

Nicolas Banholzer 1,2,3,14, James Daniel Munday 4,5,6,7,14, Philipp Jent 2,8,
Pascal Bittel2,9, Lorenzo Dall’Amico 10, Lavinia Furrer9, Charlyne Bürki 4,5,
Tanja Stadler 4,5, Matthias Egger11,12, Tina Hascher2,13, Ciro Cattuto 10 &
Lukas Fenner 1,2

Close-proximity interactions are considered a key risk factor for respiratory
virus transmission, but their importance relative to shared space and air
quality remains unclear.We conducted a six-week longitudinal study in a Swiss
secondary school (67 students, aged 14–15).Wedetected 87 infections in saliva
samples and recorded absences to identify plausible transmissions, excluding
implausible ones through genomic analysis. Time in close proximity (within 1.5
metres) was measured using wearable sensors and air quality via CO2 moni-
tors. Students spent 21.2minutes per day in close proximity (interquartile
range 7.8–44.2) and 5.3 hours in shared classrooms (IQR3.8–6.2), duringwhich
air quality was suboptimal for 1.9 hours (IQR 1.2–3.0). Using pairwise survival
models, we found that transmission was more likely within than between
classes. Close proximitywasmodestly associatedwith higher transmission risk
overall (rate ratio 1.16 per doubling daily time, 95%-CI 1.01–1.33), while time in
shared classrooms (RR 3.17, 95%-CI 1.96–5.17) and suboptimal air quality (RR
1.90 95%-CI 1.23–2.94) also predicted within-class risk. Prolonged exposure in
shared, poorly ventilated spaces, which potentially includes several infectious
sources, drives respiratory virus transmission more than close contact.

Infectious diseases transmitted through the air route such as SARS-
CoV-2 and Influenza, cause high morbidity and mortality, and their
spread is difficult to control1. Closed spaces, crowded places, and
close-contact settings (the ‘three C’s’) are known to contribute

substantially to transmission2. These conditions frequently converge
in educational settings, where students experience prolonged inter-
actions in confined indoor spaces, often in close proximity, facilitating
transmission of respiratory infections, both in the context of
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pandemics and seasonal epidemics3–6. Schools also contribute con-
siderably to the overall transmission in the population as children
transmit infection on to household members and into their
communities3,7–9.

Several studies have assessed close-contact patterns in
schools10–12, yet without quantifying their effect on transmission,
especially not in relation to other risk factors. Empirical studies are
scarce but indicate that close-range interactions may be needed for
transmission13–18, although prolonged exposure at longer ranges may
incur a similar risk13. Specifically, proximity was associated with
infection with SARS-CoV-2 during a long-distance train ride16 and
Mycobacterium tuberculosis during an airplane flight17. While most
studies relate to SARS-CoV-213,14,16,18, recent work used a viral challenge
model to study the transmission of multiple respiratory viruses
(influenza virus A virus, respiratory syncytial virus, adenovirus, etc)
following 30min close-contact interactions between infectious chil-
dren and susceptible adults15. Evidence from the SARS-CoV-2 pan-
demic further suggests that indoor air quality plays a critical role in the
transmission of respiratory infections19. However, the relative impor-
tanceof different risk factors remains inadequately quantified, limiting
our ability to design targeted interventions for effective public health
recommendations.

Here, we conducted a six-week longitudinal study during the peak
of the respiratory virus season in winter of 2023/24 in a Swiss school.
The study comprised four classes from the samegrade level, all located
on the samebuildingfloor to allow for interactionswithin and between
classes. We used a comprehensive probabilistic framework combining
molecular data, epidemiological data and assumptions, and genetic

proximity of respiratory viruses to reconstruct plausible transmissions
between students (Fig. 1). Furthermore, we detected close-proximity
interactions using wearable sensors, monitored indoor air quality with
aerosol devices and CO2 monitors, and considered social factors
possibly associated with transmission outside school. Using pairwise
accelerated failure time models, we estimated the association of
respiratory virus transmissionwith time in close-range proximity, time
spent in shared classrooms, time with suboptimal air quality (CO2

levels or particulate matter mass concentrations above recommended
levels), and social factors (household siblings and extracurricular
activities). We evaluated the relative contribution of each risk factor
both overall and within individual classes, identifying key drivers of
respiratory virus transmission in schools.

Results
Data collection overview: molecular, epidemiological, proxi-
mity, and environmental data
We collected molecular (saliva samples, viral genomic sequences),
epidemiological (school absences, student characteristics), environ-
mental (indoor CO2 levels, particulate matter mass concentrations),
and physical proximity data (time-resolved pairwise proximity rela-
tions) in four classes (67 students aged 14–15 years) of a secondary
school in the canton of Bern, Switzerland, for six weeks from January
22 to March 8, 2024 (the study period for class 4 ended one week
earlier on March 1).

We collected 1047 saliva samples from 67 out of 84 (80%) parti-
cipating students. In their saliva, we detected 87 respiratory virus
infections: 19 (22%) influenza viruses (IAV/IBV), 28 (32%) human
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Fig. 1 | Schematic overview of the collected and input data for the pairwise
survivalmodel. (1) We detected virus infections in saliva samples and constructed
paireddatasetswith transmissions thatwere epidemiologically plausible, excluding
pairs where either the infectious or exposed student was absent from school. We
also excluded transmissions of influenza A and respiratory syncytial virus through
genomic analysis. If an infection could not be linked internally to another partici-
pating student, it was considered a transmission from an external source such as a
household or community member. (2) For each student pair, we determined the
time in close proximity during the exposure period, which was collected with
wearable sensors worn by students throughout school lessons and break times. For

student pairs within classes, we determined time spent in shared classrooms and in
suboptimal air quality, which was measured with air quality monitors and aerosol
devices. Both covariates were weighted by relative infectiousness of the infector
and averaged over the exposure interval, which is the period from the onset of
infectiousness of student i (purple) until the date of infection of exposed and
susceptible student j (green). If j is never infected, the exposure period is until the
end of the infectious period of i. School-free days and absences are not included in
the exposure period. (3) The association of respiratory virus transmissionwith time
in close proximity and other risk factors was estimated using accelerated failure
time regression models, with an internal and external rate of transmission.
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rhinoviruses, 10 (11.2%) adenoviruses, 5 (6%) parainfluenza viruses, 11
(13%) respiratory syncytial viruses (RSV A/B), and 14 (16%) human
coronaviruses HCoV-229E and HCoV-OC43 (Table 1). We further
recorded 105 absences from school, most of them related to an illness
with at least one respiratory symptom.

After post-processing the wearable sensor data, we obtained
close-proximity interactions (within 1.5 metres) between each student
pair with a temporal resolution of 10 s. Overall, students were in close
proximity with another student for a median of 21.2min per day (IQR
7.8–44.2), mainly with students of their class (19.7min, IQR 7.0–42.0).
The proximity networks shown in Fig. 2 for classes N and P appear
denser (5.2% and3.6%of all possible edges) than those for classes S and
K (1.3% and 2.7%). The daily cumulative time in close proximity for
student pairs with at least one interaction was 0.7min (IQR 0.3–3.0).

We measured CO2 levels in all classrooms throughout the day
using CO2 aerosol devices and air quality monitors. Air quality was
deemed suboptimal if CO2 levels exceeded 1000 ppm. Students of the
same class shared a classroom for 5.3 h per day (IQR 3.8–6.2), during
which air quality was suboptimal for 1.9 h (IQR 1.2–3.0). Over the study
(Fig. 3), CO2 levels were above 1000 ppm for 43% of the time, with a
lower proportion in classrooms N and P (27% and 38%) than in class-
rooms K and S (61% and 43%).

Genomic analysis
We sequenced the viral RNA from samples that tested positive for
Influenza A, Influenza B and Respiratory Syncytial Virus (RSV) using an
illumina targeted next-generation-sequencing workflow. Following
alignment, consensus sequences were established for 10/13 IAV and 8/
11 RSV A/B samples with positions masked with read-depths of <10.
Coverage varied from 16–93% for IAV and 10–86% for RSV (Supple-
mentary Fig. S1). Due to their low number and relatively poor quality,
IBV sequences were not analysed further. We found 0–0.025 sub-
stitutions per comparable pair of bases for IAV and 0–0.42 for RSV.
Using pairwise comparison of the consensus sequences, based on the

likelihood of finding pairs of sequences in subsequent hosts, we were
able to identify 12 plausible transmission pairs for IAV and 6 for RSV
(Supplementary Figs. S3 and S6). Repeating the analysis with con-
sensus sequences masked at read depths of <5 and <20 had minimal
impact on the results (Supplementary Figs. S2, S4, S5 and S7).

Figure 4 showsmaximum likelihoodphylogenetic trees generated
using a coalescent model via the Nextstrain framework20; we present
sequences acquired through this study alongside global sequences,
accessed through GenBank, and sequences from the broader Swiss
population, acquired in a parallel study21. IAV sequences were clus-
tered together on the global tree, suggesting they were closely related
compared to global diversity. Although the cluster was placed in a
clade with other sequences from Switzerland, the cluster’s location
was uncertain due to genetic divergence from the rest of the tree.
Genetic divergences within the school cluster were also larger than
expectedwithin the study’s timeframe, suggesting theywere part of an
outbreak in the local community or school. Differences in the parts of
the genome that were sequenced successfully resulted in non-
transitive comparison between sequences. As a result, some identical
sequences were placed together (e.g., K-75, K-32 and K-95), but others
were not (e.g., K-32 and K-95 relative to S-7). This highlights that, while
our analysis was able to rule out transmissions, not all remaining pairs
were jointly feasible.

Four RSV G sequences were identical in comparable sections, of
which three were clustered together on the tree. The fourth waswithin
the same clade but not adjacent to the other three. This suggests that
there were at least three introductions of RSV into the school classes.
Considering that most of the positive RSV samples were collected
within thefirst fewdays of the study, it is likely thatobserved infections
form the tail of an outbreak before our observations began (Supple-
mentary Fig. S8).

Transmission networks
We used the pairwise survival analysis framework to determine epi-
demiologically plausible transmissions between students based on
assumptions about the pathogen-specific incubation and infectious
period distribution. Transmissions were excluded if either student was
completely absent from school during the infectious period, the
exposed student was considered immune due to a prior infection, or
the transmission was excluded through analysis of the genomic
sequences.

Considering uncertainty in the epidemiological parameters, the
probabilistically generated datasets comprised 4961 (IQR 4905–5021)
possible pairs where a susceptible student was exposed to infection.
Across pathogens, a median of 84 (IQR 75–92) transmissions between
students and 38 (IQR 35–40) with a probable external source (e.g., a
non-participating student, a household or a communitymember)were
identified. The transmission networks of influenza A and respiratory
syncytial virus with genomic exclusions are shown in Fig. 5 and the
networks for all other respiratory viruses are shown in Supplementary
Fig. S9–S12, including the networks for influenza A and respiratory
syncytial virus without genomic exclusions. Most IAV and RSV trans-
missions occurredwithin classes. Note that IAV infectionswereclose in
time, allowing circular transmission chains to be included in the
resulting network.

Association of transmission with risk factors
We used pairwise accelerated failure time regression models to esti-
mate the association between respiratory virus transmission and close
proximity, shared classroom time, air quality, and social factors. Time
to event was the number of days until infection of the susceptible
student, excluding dayswhen the susceptible studentwasnot exposed
(absent from school) while the other student was infectious. Prior to
estimation, time in close proximity, shared classrooms, and sub-
optimal air quality were weighted by relative infectiousness to give

Table 1 | Studypopulation and summaryof viral infections and
school absences overall and by school class

Variable N (%)
Mean (SD)

Overall K N P S

Participants 67/84
(79.8)

17/24
(70.8)

18/18
(100)

15/18
(83.3)

17/24
(70.8)

Age range 14–15 14–15 14–15 14–15 14–15

Female 26 (38.8) 5 (29.4) 6 (33.3) 6 (40.0) 9 (52.9)

Male 41 (61.2) 12 (70.6) 12 (66.7) 9 (60.0) 8 (47.1)

Viral infections 87 25 14 18 30

IAV 13 (14.9) 8 (32.0) 4 (28.6) 0 (0.0) 1 (3.3)

IAB 6 (6.9) 4 (16.0) 2 (14.3) 0 (0.0) 0 (0.0)

HRV 28 (32.2) 2 (8.0) 3 (21.4) 7 (38.9) 16 (53.3)

AdV 10 (11.5) 4 (16.0) 0 (0.0) 3 (16.7) 3 (10.0)

PIV 5 (5.7) 0 (0.0) 2 (14.3) 1 (5.6) 2 (6.7)

RSV 11 (12.6) 3 (12.0) 2 (14.3) 5 (27.8) 1 (3.3)

HCoV-OC43 8 (9.2) 2 (8.0) 1 (7.1) 2 (11.1) 3 (10.0)

HCoV-229E 6 (6.9) 2 (8.0) 0 (0.0) 0 (0.0) 4 (13.3)

School
absences

105 28 29 27 21

Respiratory
illness

81 (77.1) 23 (82.1) 22 (75.9) 22 (81.5) 14 (66.7)

Other illness 4 (3.8) 1 (3.6) 1 (3.4) 1 (3.7) 1 (4.7)

Unrelated to
illness

20 (19.1) 4 (14.3) 6 (20.7) 4 (14.8) 6 (28.6)

IAV influenza A, IBV influenza B, HRV human rhinovirus, AdV adenovirus, PIV human parain-
fluenza virus,RSV respiratory syncytial virus,HCoV-OC43humancoronavirusOC43,HCoV-229E
human coronavirus 229E.
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higher weight to exposures around symptom onset of the infectious
student.

Based on the model estimates aggregated across all probabil-
istically generated datasets, a twofold increase in the infectiousness-
weighteddaily time in closeproximitywasassociatedwith a 16%higher
rate of transmission (rate ratio [RR] 1.16, 95%-credible interval [CI]
1.01–1.33). After five days of exposure, the transmission risk was about
0.5% without any close-range interaction, about 1.5% with one minute,
and about 2.5% with ten minutes in close proximity per day (Fig. 6A).
The median time in close proximity during the study and the
unweighted average time during the exposure period were only ten-
tatively associated with transmission (Supplementary Table S1).
Results were similar when using physical proximity data with different
attenuation thresholds and transmission data without genomic
exclusions (Supplementary Fig. S13).

Transmission was more likely within than between classes (RR
4.02, 95%-CI 1.69–9.64). After five days of exposure, the transmission

risk was about 0.5% between versus about 2%within classes (Fig. 6B). A
twofold increase in shared classroom time was associated with higher
transmission (RR 3.17, 95%-CI 1.96–5.17). We did not find evidence for
an association of time in close proximity with transmission within
classes (RR 1.03, 95%-CI 0.88–1.21; see Supplementary Fig. S13 for dif-
ferent attenuation thresholds).

A twofold increase in the time CO2 levels exceeded 1000 ppm
(suboptimal air quality) was associated with higher transmission (RR
1.90, 95%-CI 1.23–2.94). After 5 days of exposure, the transmission risk
remained below 1–2% for 1–2 h per daywith suboptimal air quality and
reached almost 4% for four hours (Fig. 6C). Associations were similar
when using slightly lower or higher CO2 level thresholds for sub-
optimal air quality, or when measuring it with the time during which
the concentration of particles smaller than 2.5 μm (PM2.5) exceeded 5
μm/m3 (Supplementary Table S1).

In addition to estimating relative risks, we evaluated the relative
contribution of each risk factor to transmission based on the relative

Fig. 2 | Close proximity data. Contact network showing the median daily time
spent in close proximity. Connections are displayed for student pairs who inter-
acted at close range on at least half of the days they attended school, with thicker
lines indicating longer time in proximity. Nodes are coloured by school class.

Student IDs are shown for individuals infectedwith influenzaA virus (IAV, circles) or
respiratory syncytial virus (RSV, squares), while triangles indicate students infected
with other viruses. Corresponding transmission networks for IAV and RSV are
shown in Fig. 5.
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changes in the model log-likelihoods over the null model without any
covariates. The relative contributions are shown in Fig. 6D. Prolonged
exposure in shared classrooms (relative contribution 54%, 95%-CI
22–81) tended to contribute more to overall transmission than time in
close proximity (21%, 95%-CI 0–44). For transmissions within classes,
shared classroom time (relative contribution 59%, 95%-CI 22–80) and
suboptimal air quality (29%, 95%-CI 5–49) contributed more than time
in close proximity (4%, 95%-CI 0–20). The relative contributions of
social factors (household siblings and extracurricular activities) were
about 10% overall and about 5% for transmissions within classes. In
terms of relative risks, there was little evidence for an association of
social factors with transmission (Supplementary Table S1).

Discussion
We studied the association of respiratory viral transmission in a Swiss
schoolwith time in closeproximity to an infectious student, prolonged
exposure in shared classrooms, and indoor time with suboptimal air

quality. We used a multifaceted approach combining molecular, phy-
sical proximity and environmental data within a probabilistic frame-
work. We identified probable transmission networks that were
suggestive of transmissions in school, mostly within but sometimes
also between classes. Our study provides further empirical evidence
that close-range interactions contribute to respiratory virus transmis-
sion. However, persistent exposure to contaminated shared classroom
air was the dominant risk factor. This comprehensive assessment in a
real-world educational setting offers new insights into the transmis-
sion dynamics among adolescent students based on objective mea-
sures of physical proximity, virus infections and environmental
conditions.

We found that time spent in proximity was associated with a
higher risk of transmission. Previous studies in confined environments
have also observed that susceptible individuals were more likely to be
infected when in closer proximity to infectious individuals16,17,22–24. In a
virus challenge model in a healthcare setting, close-range contact for
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30min resulted in transmission in 15% of interactions between infec-
tious children and adults15, supporting the plausibility of our real-world
findings in schools. Furthermore, a digital contact tracing study of
SARS-CoV-2 transmission found that short close-range exposures
incurred a similar risk as prolonged long-range exposures13. In our
study, time in close proximity was associated with transmission when
weighted by relative infectiousness, suggesting that close contact
around symptom onset facilitates transmission. Within classrooms,
time in close-range proximity was not clearly associated with trans-
mission. Instead, duration of exposure and air quality predicted
transmission events. This suggests that the cumulative risk from
shared presence in a contaminated indoor space may exceed the risk

of short-range person-to-person transmission, possibly because every
susceptible individual is generally only exposed to a small number of
potentially infectious sources via close contact compared to multiple
ones in a classroom.

Indoor air quality emerged as a critical risk factor for trans-
mission within classrooms, with more transmissions in school
classes with lower air quality throughout the study. Most infections
occurred in the school class where CO₂ exceeded 1000 ppm during
two-thirds of the time students were in the classroom compared to
one-third of the time in the school class where only few infections
occurred. Previous work has shown that poorly ventilated indoor
spaces facilitate the transmission of respiratory infections6,25,26, also
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Fig. 4 | Maximum likelihood phylogenetic mutation trees for influenza A and
respiratory syncytial virus. A Tree for influenza A H1N1 NA gene and (B)
respiratory syncytial virus G gene, including international samples. International
samples are coloured in grey, Swiss samples in red, and samples from this study in
green. Also phylogenetic mutation trees with all non-ancestral branches for the
study samples pruned for (C) Influenza A H1N1 NA gene and (D) respiratory

syncytial virus G gene. Branch colours indicate sections of the tree that are entirely
occupied by samples from this study. Branches are shown in a common colour if
they represent a complete sub-tree on the global tree, hence branches of different
colours indicate that non-school-study samples exist between the constituent
leaves. Nodes are coloured by school class.

Article https://doi.org/10.1038/s41467-025-66719-3

Nature Communications |        (2025) 16:11678 6

www.nature.com/naturecommunications


over longer ranges depending on airflow27, and including the strictly
airborne bacterial pathogen Mycobacterium tuberculosis28,29. How-
ever, most studies are modelling-based30–33 and lack the combina-
tion of multiple data sources to first determine transmission and
then its association with environmental and other risk factors. Our

results could be applied in mathematical models to refine estimates
about the impact of infection control and preventive measures in
schools and other indoor settings10,34. They also emphasise the
importance of indoor air quality in building designs and ventilation
performance19,26,35.

Fig. 5 | Transmission networks of influenza A and respiratory syncytial virus
based on epidemiological and genomic data. The networks show all plausible
within-school transmission events between participating students, based on epi-
demiological delays and school absences, with implausible links excluded through
genomic analysis. Arrow thickness indicates the probability of transmission,

defined as the proportion of paired datasets in which each link was present,
accounting for uncertainty in the timing of infections and infectious periods. The
temporal axis represents the date of the first positive saliva sample, which may
occur several days after infection, allowing circular links. Nodes are coloured by
school class.
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Our findings should be interpreted in the context of the different
routes and particle sizes for the transmission of respiratory viruses via
the air36–38. Short-range transmission occurswhen respiratory particles
of various sizes are transmitted over short distances through direct
projection or inhalation, requiring proximity between infectious
source and susceptible host. In contrast, long-range transmission
involves smaller particles that remain suspended in the air, so that they
can accumulate in poorly ventilated rooms, increasing the risk of

infection for everyone in the room, irrespective of proximity. Under-
standing transmission within the framework of the “three C’s”—closed
spaces, crowded places, and close-contact settings—has therefore
emerged as a critical paradigm for respiratory infection control2. While
these conditions frequently coincide in educational settings, their
relative importance remains poorly understood. In addition, the rela-
tive contributions of short and long-range transmissions to overall
transmissionmay vary by pathogen. For example, a comparison of our

Fig. 6 | Association of respiratory virus transmission with close proximity,
shared classroom environment and indoor air quality. A–C Estimated trans-
mission risk by days of exposure over one school week, shown as mean estimates
(lines) with 95% confidence intervals (ribbons) coloured by different covariate
levels. A Transmission risk by daily time spent in close proximity for both within-
and between-class transmissions. B Transmission risk for students depending on
whether they shared a classroom. C Transmission risk by daily duration that
classroom CO₂ levels exceeded 1000 ppm (indicative of suboptimal air quality),
restricted to within-class transmissions. D Relative contribution of each risk factor

to transmission, expressed as the change inmodel log-likelihoodwhen adding each
predictor separately to a baseline (null) pairwise accelerated failure time model.
Relative factor contributions are shownwithmeans (dots) and 95%quantiles (lines)
across the N = 1000 probabilistically generated datasets, representing uncertainty
due to the stochastic reconstruction of transmission pairs. Note that the con-
tributions of shared classroom time and low air quality could not be assessed (n.a.)
for all transmissions combined (within andbetweenclasses), and the effect ofbeing
in the same class could not be assessed for within-class transmissions alone.
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previous studies in schools showed that SARS-CoV-2 was more fre-
quently detected in air samples than other respiratory viruses39, sug-
gesting greater persistence in the air and a potentially prolonged
exposure risk in shared indoor environments.

Our genomic analysis revealed distinct transmission clusters
within classrooms, with limited cross-class transmission despite stu-
dents sharing the same building floor. This emphasises how the
classroom microenvironment creates conditions favouring virus
spread beyond what contact patterns alone would predict. While
previous studies have sought to determine transmission dynamics in
close-proximity environments40,41, our study integrates molecular
epidemiology, genomic analysis, and proximity data from wearable
sensors within a probabilistic framework to reconstruct transmission
networks in schools.

Our study has several limitations. First, our six-week study
represents a single season in a Swiss school. Several influenza A and
respiratory syncytial virus infections were observed at the start of the
study. This pattern, combinedwith our genomic analysis, suggests that
wemayhavemissed thepeakof transmission for these viruses and that
some students were no longer susceptible to infection. Transmission
dynamics may also be different in other seasons or regions, and vary
depending on building designs or educational characteristics influen-
cing contact behaviour and indoor exposure. Nevertheless, the study
was overall conducted during the peak of the respiratory virus season
and our comprehensive viral test panel captured multiple circulating
pathogens, providing broader insights than single pathogen studies.
Second, incomplete genomic sequence coverage for pathogens other
than influenza A and respiratory syncytial virus limited the inference of
transmissionnetworks.Our probabilistic framework considered awide
range of scenarios, including school absences and uncertainty about
the timeline of infections. However, it may still underestimate the
number of external transmissions, as any transmission will be cate-
gorised as internal if the timeline of the person who became infected
(infectee) aligns with that of at least one plausible source of infection
(infector) among the participating students. Third, although more
participants acrossmultiple schools would strengthen our results, our
data-intensive longitudinal design with high-frequency sampling pro-
vides an in-depth analysis that compensates for breadth. We note,
however, that the sample size per pathogen was not large enough to
study variation in the effects of transmission risk factors between
pathogens. Fourth, although CO2 concentration is an established
proxy for ventilation efficiency, it does not directly reflect viral con-
centration in the air. Fifth, wearable sensorsmeasure time in proximity
but not the type of activity, which might modify transmission risk.
Finally, we note that the estimated relative contributions might be
partially driven by the fact that exposure in the classroom is usually to
several potential infectious sources, whereas close proximity is limited
to a single or few potential sources at any given time.

In conclusion, our study shows that, while time in close proximity
increases the risk of respiratory virus transmission, prolonged expo-
sure to contaminated air in confined spaces overall emerges as the
dominant driver of viral spread in indoor environments such as edu-
cational settings. Our results suggest a complex interplay between
prolonged exposure, crowding and environmental risk factors, as well
as a relevant contribution of the number of potential infectious sour-
ces present in a room. Indoor air quality was associated with intraclass
transmission, highlighting how inadequate ventilation creates ideal
conditions for virus transmission. Our findings also have important
implications for public settings other than schools, such as work-
places, transportation, and healthcare facilities. Importantly, they
support the adoption of comprehensive infection control strategies
that address both crowding and environmental interventions designed
to improve indoor air quality. These strategies will inform the devel-
opment and evaluation of interventions in the context of building
design, seasonal epidemics, and pandemic preparedness. Future

studies across diverse settings, possibly with real-time monitoring of
air quality, could enable adaptive risk assessment and targeted inter-
ventions. Our multifaceted approach offers a promising direction for
holistic environmental and digital surveillance of infectious disease
transmission.

Methods
Study design and setting
We collected molecular (saliva samples, viral genomic sequences),
epidemiological (school absences, student characteristics), environ-
mental (indoor CO2 levels, particulate matter mass concentrations),
and physical proximity data (time-resolved pairwise proximity rela-
tions) in four classes (67 students aged 14–15 years) of a secondary
school in the canton of Bern, Switzerland, for six weeks from January
22 to March 8, 2024 (the study period for class 4 ended one week
earlier on March 1).

The classes were located on the same building floor (Fig. 7),
allowing students of different classes to interact during breaks and
personal study. On a typical weekday, the students arrived at the
school around 7:30 amand lessons ran until noon, with small 5–10min
breaks between lessons and a longer 30min break at 10 am, during
which they wore the sensors. After a 1-h lunch break, often outside
school and without wearing the sensors, lessons continued in the
afternoon until about 3:30 pm. Most indoor lessons took place in
shared classrooms among students of the same class, but students
from different classes could interact during short breaks in the corri-
dor, long breaks on the school ground, and during times reserved for
personal study in shared rooms.

At study start, students were asked to report the number of sib-
lings in their household and any extracurricular activities, which were
considered social factors of transmission outside school. School
absences and times spent in classrooms were recorded daily by our
local study teamandentered electronically on the securewebplatform
REDCap (https://project-redcap.org/)42.

Molecular data
Saliva samples were collected three times per week (Monday, Wed-
nesday, Friday) and analysed by real-time PCR using the Seegene’s
Allplex RV Master Assay and the Respiratory Panel 3 (Seegene, Seoul,
South Korea) to detect a combined panel of 24 major respiratory
viruses and viral subtypes, including SARS-CoV-2, influenza A/B virus,
respiratory syncytial virus, adenovirus, metapneumovirus, parain-
fluenza virus, rhinovirus, coronaviruses NL63, 229E, OC43, and boca-
virus. We defined an infection episode as a consecutive period of
positive saliva test results and separated them into two episodes if
more than oneweek elapsed between two positive results. Our trained
study team further collected daily data on absences from school. We
refer the reader to ref. 43 for a detailed description and analysis of the
molecular and epidemiological data of this study.

Physical proximity data
We used wearable sensors from the SocioPatterns collaboration
(sociopatterns.org) to detect close proximity between students. The
methodology has been used in many settings11,40,41,44–47, including
schools11,44, households41,45, social gatherings47, tertiary care settings40,
and has been validated against self-reported contacts recorded via
paper diaries46. The wearable sensors detect close-range proximity by
exchanging ultra-low-power radio packets and measuring attenuation
and reception rate. The data logged by individual sensors can be post-
processed applying application-specific definitions of “contact” based
on signal attenuation, reception rate, andmore. For the present study,
data were post-processedwith an attenuation threshold of −65 dBM so
that close-range interactions within about 1–1.5m were detected. This
choice was made before analysis began, considering the radio setup
and enclosures used for data collection, and following the choices
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made in previous studies with similar setups and settings41,48. To assess
variation, we performed a sensitivity analysis with a slightly higher and
lower threshold compared to our default, which detects more and less
close-proximity encounters at larger and shorter distances,
respectively.

Close-proximity contacts were measured with a temporal reso-
lution of 10 s, yielding a time-resolved proximity graph between study
participants. Each sensor has a unique ID linking the contact data to its
wearer. Students wore the sensors pinned to the front of their shirts in
a pouch to ensure consistent geometry and more accurate proximity
detection. They were asked to wear the sensors throughout school
hours, except during sports and school trips. Data was downloaded
from the sensors at the end of every second week, when sensors were
serviced to replace batteries and clear on-board memory. Wearable
sensors also included a 3D accelerometer that records the device’s
orientation in space and over time, which was used to detect com-
pliance with sensor wearing. Moreover, we addressed adherence
issues (lost or replaced devices) and removed spurious interactions
when sensors were collected or handed out. After post-processing, we
computed the daily cumulative time in close proximity between each
pair of students. If two studentswere in school but one of their sensors
was not worn (as detected by the accelerometer, i.e., stationary for an
extended time interval), the time was imputed with the daily median
over the study.

Air quality data
We collected CO2 levels per classroom using two aerosol devices (AQ
Guard, Palas GmbH, Karlsruhe, Germany) and two air quality monitors
(Aranet4 Home, SAF Tehnika JSC, Riga, Latvia). We measured the time
during which CO2 levels exceeded 1000, 1400 or 2000 ppm, com-
monly used thresholds for suboptimal indoor air quality49. In two
classes, we also measured the time during which the concentration of
particles smaller than 2.5μm (PM2.5) exceeded 5μg/m3, a threshold
recommended by the Swiss Federal Commission on Air Hygiene50.

Genomic analysis
Viral genomes from samples testing positive for influenza (IAV/IBV)
and respiratory syncytial virus (RSV A/B) were sequenced on NovaSeq

(Illumina, USA) using an amplicon based next-generation-sequencing
approach (xGen Respiratory Virus kit, IDT, USA). Reads were assem-
bled using BLAST and consensus sequences established for samples
with ≥20% coverage. Sites with read depth <10 were masked. Con-
sensus sequences of IAV and RSV A were analysed to identify trans-
missions. Due to limited coverage, we focused on the NA region of IAV
and the G gene of the RSV A genome.

To establish likely transmission events, we calculated the number
of single nucleotide polymorphisms (SNPs) between each pair of
sequences as the proportion of comparable sites. We then computed
the likelihood that sequences were consistent with a transmission
using the Jukes Cantor ‘69 substitution model. We assumed an evolu-
tion time of the number of days between test dates plus a perceived
maximum of 4 days (2 days of within-host evolution per sample), and
calculated the log-likelihood of the model using the closed form
expression51

logL μ, tjsj , sj
� �

= l si, sj
� �

log
1
4
+
1
3
exp �4

3
μt

� �� �

+d si, sj
� �

log
1
4
� 1

4
exp �4

3
μt

� �� � ð1Þ

where μ is the substitution rate, t is the time between samples in
evolutionary time, si and sj are the sequences of samples collected
from individuals i and j, dðsi, sjÞ and lðsi, sjÞ are the hamming distance
and the number of comparable nucleotide positions between si and sj ,
respectively. For both IAV and RSV, we assumed a nucleotide sub-
stitution rate of 1.5 × 10−3 mutations per site per year, which is close to
the estimates in literature52,53.

We compared our sequences with those from clinical samples
across Switzerland21 and those publicly available from GenBank, con-
structing maximum likelihood phylogenetic trees using a coalescent
model in the Nextstrain framework20. See Supplementary Text A for
detailed methods.

Pairwise survival analysis
To assess the association of virus transmission with close-range
proximity and air quality, we used the pairwise survival analysis

Learning space Learning space WC

Learning space Entrance

Corridor

ClassroomClassroom

Classroom Classroom

Schoolground

Air quality monitors Windows Doors

Fig. 7 | Schematic view of the school study setup. The four classrooms (purple
squares)were on the samefloor of thebuilding, separatedby a corridor. Therewere
also rooms for personal study and group work, where students from different
classes could meet. During breaks, students could choose to spend their time

indoors or outside on the schoolground. Each room has a door onto the corridor
and a window overlooking the surrounding schoolground. One air quality monitor
was installed per classroom.

Article https://doi.org/10.1038/s41467-025-66719-3

Nature Communications |        (2025) 16:11678 10

www.nature.com/naturecommunications


framework54–56. Figure 1 provides a schematic overview from data
collection to modelling. In summary, we identified virus infections
from our molecular data using the first positive saliva test results. We
probabilistically created datasets of all possible infector-infectee pairs
among participating students, considering uncertainty in the
pathogen-specific incubation and infectious period. In each dataset,
we distinguished between internal transmission pairs among study
participants and external transmission pairs with unknown external
sources, as well as the corresponding internal and external pairs at risk
with the susceptible students exposed but not infected. Times in close
proximity and other risk factors were computed for each internal pair
and the associations were estimated using accelerated failure time
models, with time to event defined as the number of days the sus-
ceptible student was exposed while being in school together with the
infectious student. Themodels were estimated for each paired dataset
and the estimation results were summarised with the median across
datasets. In the following, we provide a detailed description of the
model input data, epidemiological assumptions, the approach to
generate paired datasets, and model estimation. Note that we some-
times deviate from the original pairwise survival analysis
framework54–56 to tailor the analysis to our school setting. These
deviations are noted accordingly. See Supplementary Text B for illus-
trations and examples of important methodological details.

Timelines of infection from molecular data
An infection episode was defined as a period of consecutive positive
molecular tests, starting from the first positive test result to the last
one. Two episodes were separated if more than one week elapsed
between two positive test results. Supplementary Fig. S8 shows an
overview of the test results and school absences.

The date of the first positive saliva test result was assumed to be
the start of infectiousness.We considered a possible delay in obtaining
the test result due to days without testing (Tuesday and Thursday),
school-free days (school holidays and weekends) and absences from
school (due to illness or other reasons). For example, if a student first
tested positive onWednesday, we assumed that the first possible date
was Tuesday. Similarly, if a student first tested positive on Friday but
was not in school fromWednesday to Thursday, the first possible date
was also Tuesday. We sampled the first possible positive test date
probabilistically, assuming that dates near the first observed positive
test results were more probable (as illustrated in Supplementary
Fig. S14).

We backcalculated the date of infection (start of infection) from
the first possible positive test date (corresponding to the start of
infectiousness) by making assumptions about the pathogen-specific
incubation and latent period. The end of the infectious period
depended on the pathogen-specific infectious period. The end of the
infection corresponded to the last possible positive test date, which
was probabilistically sampled analogous to the first possible one.
Immunity to reinfection with the same pathogen started from the date
of infection and lasted until end of infection plus a pathogen-specific

immunity period. The timeline of infections is illustrated in Supple-
mentary Fig. S15.

Epidemiological assumptions
The incubation and infectious periods were sampled from pathogen-
specific lognormal prior distributions (Table 2). The pathogen-specific
incubation periods were obtained from a systematic review57. The
latent periodswere assumed to be one day shorter than the incubation
period for influenza A/B, respiratory syncytial virus, parainfluenza
virus58–61, and human coronaviruses HCoV-229E and HCoV-OC43. They
were assumed to be equal to the incubation period for the other
respiratory viruses, implying no pre-symptomatic transmission.

The infectious period has rarely been systematically assessed for
respiratory viruses.We used various sources,mostly pertaining to viral
shedding, and expert knowledge to determine the infectious period
per pathogen. If available, we used existing estimates, and otherwise
formulated priors about the median, lower and upper limit, from
which we computed the dispersion. Since we could not find estimates
for the incubation and infectious period specific to human cor-
onaviruses HCoV-229E and HCoV-OC43, we assumed their prior dis-
tributions were the same as for influenza A.

The immunity period was fixed at one week for human rhinovirus
and eight weeks for all other respiratory viruses. Thereby, we exclude
the possibility of re-infection over the study period for pathogens
other than human rhinovirus. Re-infections were mainly observed for
human rhinovirus and only in a few cases for adenovirus (Supple-
mentary Fig. S8). For human rhinovirus, frequent re-infections are
plausible in school settings due to the simultaneous circulation of
numerous antigenically distinct serotypes62, allowing individuals to be
infected multiple times within a short period.

Paired datasets of infectious and exposed students
We generated multiple datasets of epidemiologically plausible trans-
missions between pairs of students. For each infection, we formed
pairs of the infectious student with all other students participating in
the study. If either the infectious or the susceptible student was absent
from school during the entire infectiousness period of the infectious
student, we considered the susceptible student not exposed and
removed the pair.We further assumed no exposure during school-free
days. Finally, we removed pairs if the exposed student was still con-
sidered immune due to a previous infection, assuming no cross-
immunity between pathogens, which means that, for example, a pre-
vious influenza A infection conferred no protection against a respira-
tory syncytial viral infection.

We first determined internal transmission pairs, defined as an
infection of the exposed student with the same pathogen as the
infectious student. For influenza A and respiratory syncytial virus, we
excluded highly unlikely internal transmissions based on whether a
pairwise comparison of genetic sequences yielded a likelihood of
lower than0.5 for transmission. Note that anexposed student canhave
multiple plausible infectors. Circular (bi-directional) transmissions are

Table 2 | Assumptions about the pathogen-specific incubation and infectious period distribution

Pathogen Incubation period distr. (median, dispersion) Infectious period distr. (median and dispersion) Sources

Influenza A Lognormal (1.4, 1.51) Lognormal (5, 1.19) 57,58,61,64

Influenza B Lognormal (0.6, 1.51) Lognormal (4, 1.16) 57,58,61,64

Adenovirus Lognormal (5.6, 1.26) Lognormal (4, 1.80) 57,65

Parainfluenza virus Lognormal (2.6, 1.35) Lognormal (7, 2.15) 57,61,66

Respiratory syncytial virus Lognormal (4.4, 1.24) Lognormal (4, 1.64) 57,60,61,67

Human rhinovirus Lognormal (1.9, 1.68) Lognormal (11, 1.17) 57,68

HCoV-OC43 Lognormal (1.4, 1.51) Lognormal (5, 1.19) Same as for influenza A

HCOV-229E Lognormal (1.4, 1.51) Lognormal (5, 1.19) Same as for influenza A
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also possible because the epidemiological parameters were sam-
pled per individual, which means that in any probabilistically gener-
ated dataset two students testing positive for the same pathogen on
the same day could have a different incubation period and thus a
different infection date. These circles can further be amplified by
variations in the first possible positive saliva test date due to absences
and school-free days.

Infections thatwere not linked internallywere assumed to have an
external source outside the study. Pairs without any plausible trans-
mission were denoted as pairs at risk, resulting in four types of pairs:
1. Internal transmission pair: Susceptible student infected by an

internal source (participating student).
2. External transmission pair: Susceptible student infected by an

external source.
3. Internal pair at risk: Susceptible student exposed to an internal

source but not infected.
4. External pair at risk: Susceptible student exposed to an external

source throughout the study and for every pathogen.

Our paired data represents time to event data, with time to event
defined as the time to infectious contact, referred to as the contact
interval54–56. However, in our school setting, susceptible students were
not exposed internally, for example, when absent from school.
Therefore, we defined the time to event for internal pairs as the
number of days the susceptible student was exposed and in school
together with the infectious student and refer to it as the exposure
interval. Note that the exposure intervals canbe right censored for two
reasons. First, the start and end of the infectious period is censored by
the start and end of the study period, respectively. Second, the
exposure intervals for internal and external pairs at risk can be cen-
sored by prior internal or external infection. After considering cen-
soring, a pair at riskwas removed if it has anexposure intervalof length
zero. We provide examples of exposure intervals with and without
censoring in Supplementary Fig. S16.

Pairwise accelerated failure time models
The pairwise accelerated failure time regressionmodel54–56 is related to
a susceptible, infectious, or removed (SIR) model. Assume individual i
is infected at time ti0, becomes infectious at ti1, develops symptoms
at ti2, and ceases to be infectious at ti3. During the infectious period, i
can infect susceptible individual j if they had contact while i was
infectious. The time until infectious contact is referred to as the con-
tact interval τij , but we denoted it as the exposure interval (see above),
also to distinguish it from (close) contact between i and j, which is a
covariate in our model.

Accelerated failure time regressionmodels belong to the broader
class of parametric survival models. They assume that covariates
accelerate or decelerate the event, which in our analysis was respira-
tory virus transmission between individuals i and j. The exposure
interval τij is drawn from a failure time distribution. We chose an
exponential distribution with a cumulative hazard function

Hij τij
� �

=
Z τij

0
h uð Þdu= τij�λij , ð2Þ

with hazard rate

λij = exp β � Xij

� �
λ0, ð3Þ

where λ0 is the baseline hazard rate and β is the effect of time in close
proximity or any other covariate Xij on the log rate ratio. If β>0 an
increase in the covariate would accelerate (increase the risk or rate of)
transmission, while if β<0 an increase in the covariate would decele-
rate (decrease the risk or rate of) transmission. The cumulative risk of
transmission further increases with prolonged exposure (higher τij).

The baseline hazard rate consists of two terms

λ1�Ii =0
0 μIi =0

0
ð4Þ

where λ1�Ii =0
0 is the rate for internal transmissions (i>0 denoting an

internal source) and μIi =0
0 is the rate for external transmissions (i=0

for an external source). The internal and external rates were modelled
with exponential distributions. The values of covariates not defined for
external pairs (close proximity, shared classroom time, and air quality)
were set to zero, and the effects of covariates defined also for external
pairs (social factors) included an interaction term, so that these cov-
ariates could have different effects on the rate of internal and external
transmissions.

The pairwise accelerated failure time regression model was esti-
mated under the assumption that who-infected-whom was not
observed54. Note that a susceptible student could have multiple pos-
sible infectors per dataset. The pairwise model considers that by
integrating the log likelihoods over all possible infectors i of the sus-
ceptible student54–56.

Infectiousness-weighted time in close-proximity
We estimated the association between transmission and the daily
average time in close proximity during the exposure period weighted
by relative infectiousness of the infectious student. Thereby, we aimed
to give higher weight to close-proximity times on days when the
infectious student was probably more infectious.

We assumed that infectiousness peaked at the day of symptom
onset and quickly decreased thereafter. We modelled relative infec-
tiousness using a Weibull distribution with shape parameter k = 2 and

scale parameter λ=
tp

k�1
kð Þ1k

depending on the day of symptom onset tp

(Supplementary Fig. S17). The probability weights pd for days
d = 1, . . . ,Ti of the infectious period of individual iwere sampled from

a Weibullð2, λjtpÞ. They were discretised as ep=
R 1:5
0 p tð Þdt for d = 1 and

ep=
R d +0:5
d�0:5 p tð Þdt for d > 1, and divided by pT =

R Ti +0:5
0 p tð Þdt so thatP

d pd =
P

d
epd
pT

= 1. The scaling factorswd were obtained bymultiplying

pd with Ti. Each daily close contact time Xd
ij during the infectious

period was up- or down-weighted by multiplying withwd and the sum
of the re-scaled close-proximity times Y ij was computed. Y ij was then
divided by the length of the exposure period Tj to obtain the daily

average infectiousness-weighted close-proximity time �Y ij . Formally,

pd � Weibull 2, λjtp
� �

ð5Þ

wd =pd � Ti ð6Þ

Y ij =
XTi

d = 1

wd � Xd
ij ð7Þ

�Y ij =
1
Tj

� Y ij ð8Þ

Weshow the impact ofweighting by infectiousnesswith examples
in Table S2.

Finally, we computed the log of the daily average infectiousness-
weighted time in close proximity. The log reduced the skew in the
distribution of close-proximity times and the impact of outliers from
rare but very long close-range interactions. By using the log, the esti-
mated effect remains interpretable, giving the rate ratio for a doubling
of the time in close proximity. Note that other time-varying risk factors
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(time in the same classroom and suboptimal air quality) were also
weighted by infectiousness and the log transformation applied.

Model estimation
We generated 1000 paired datasets using a probabilistic approach
considering uncertainty in the timing of infections and infectiousness.
We also estimated the contribution of risk factors by comparing the
relative changes in the model log-likelihoods when adding each factor
to the null model without covariates. Pairwise accelerated failure time
models were estimated using the TranStat package version 0.3.763. All
analyses were performed in R version 4.2. We report continuous vari-
ables with median and interquartile range (IQR), categorical variables
with frequency and proportion (%), and model-based estimates with
the median of the means and 95%-confidence intervals (CIs) across
datasets.

Ethics statement
The study was approved by the Ethics Committee of the Canton of
Bern, Switzerland (reference no. 2023-02035). All students willing to
participate in the collection of molecular, epidemiological, and
proximity data were included, and written informed consent was
obtained from the students and their caregivers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
De-identified close-proximity data and all genomic sequences gener-
ated from the data collected during this study are available at osf.io/
naut4. Sequences used in themain analysis detailed in thismanuscript
are further available on GenBank under accession numbers detailed in
Supplementary Text C. Genomic viral sequences collected as part of
the Swiss Respiratory Virus Sequencing study are available in BioPro-
ject PRJEB83635 under the accession numbers detailed in Supple-
mentary Text C and Tables S3-S4. Global genomic viral sequences are
available from GenBank (https://www.ncbi.nlm.nih.gov/genbank/)
under the accession numbers detailed in Supplementary Text C and
Tables S5-S6. Restrictions on the availability of other personal data
apply but are necessary to maintain the confidentiality of participants.
The data can be made available upon request, subject to approval by
the local ethics committee and the Technology Transfer Office of the
University of Bern. Requests will be given expedited review, but the
timeframedependson the review timeof the involvedparties (contact:
University of Bern, info.ispm@unibe.ch).

Code availability
The R code files for the descriptive analysis, generation of the paired
datasets used for modelling, and the analysis of the modelling results
are available at: osf.io/naut4. Via the same link, we also provide code
files and a dummy dataset to run the main functions used to generate
and analyse the paired dataset. This enables users to test our data
processing and analysis pipeline, as it is not possible to reproduce the
main modelling results due to restrictions on the availability of per-
sonal data. All analyses are performed in R version 4.2. Pairwise
accelerated failure time models are estimated using the TranStat
package version 0.3.7. To generate and analyse the paired dummy
datasets, the following additional R packages are used: tidyverse ver-
sion 2.0.0, tidygraph version 1.3.1, ggraph version 2.2.1, and lubridate
version 1.9.4. All required R packages are automatically installed when
running the code files.
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