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Abstract. The problem of mapping human close-range proximity net-
works has been tackled using a variety of technical approaches. Wearable
electronic devices, in particular, have proven to be particularly success-
ful in a variety of settings relevant for research in social science, complex
networks and infectious diseases dynamics. Each device and technology
used for proximity sensing (e.g., RFIDs, Bluetooth, low-power radio or
infrared communication, etc.) comes with specific biases on the close-
range relations it records. Hence it is important to assess which statisti-
cal features of the empirical proximity networks are robust across differ-
ent measurement techniques, and which modeling frameworks generalize
well across empirical data. Here we compare time-resolved proximity
networks recorded in different experimental settings and show that some
important statistical features are robust across all settings considered.
The observed universality calls for a simplified modeling approach. We
show that one such simple model is indeed able to reproduce the main
statistical distributions characterizing the empirical temporal networks.
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1 Introduction

Being social animals by nature, most of our daily activities involve face-to-
face and proximity interactions with others. Although technological advances
have enabled remote forms of communication such as calls, video-conferences,
e-mails, etc., several studies [34,50] and the constant increase in business travel-
ing, provide evidence that co-presence and face-to-face interactions still represent
the richest communication channel for informal coordination [29], socialization
and creation of social bonds [28,48], and the exchange of ideas and informa-
tion [14,35,51]. At the same time, close-range physical proximity and face-to-
face interactions are known determinants for the transmission of some pathogens
such as airborne ones [31,39]. A quantitative understanding of human dynam-
ics in social gatherings is therefore important not only to understand human
behavior, creation of social bonds and flow of ideas, but also to design effective
containment strategies and contrast epidemic spreading [21,40,44].

Hence, face-to-face and proximity interactions have long been the focus of
major attention in social sciences and epidemiology [4,5,7,18] and recently var-
ious research groups have developed sensing devices and approaches to auto-
matically measure these interaction networks [1,10,16,30,32,39,47,49]. Reality
Mining (RM) [16], a study conducted in 2004 by the MIT Media Lab, was the
first one to collect data from mobile phones to track the dynamics of a com-
munity of 100 business school students over a nine-month period. Following this
seminal project, the Social Evolution study [32,33] tracked the everyday life
of a whole undergraduate dormitory for almost 8 months using mobile phones
(i.e. call logs, location data, and proximity interactions). This study was specif-
ically designed to model the adoption of political opinions, the spreading of
epidemics, the effect of social interactions on depression and stress, and the eat-
ing and physical exercise habits. More recently, in the Friends and Family study
130 graduate students and their partners, sharing the same dormitory, carried
smartphones running a mobile sensing platform for 15 months [1]. Additional
data were also collected from Facebook, credit card statements, surveys includ-
ing questions about personality traits, group affiliations, daily mood states and
sleep quality, etc.

Along similar lines, the SocioPatterns (SP) initiative [10,26] and the Socio-
metric Badges projects [30,36,37] have been studying since several years the
proximity patterns of human gatherings, in different social contexts, such as sci-
entific conferences [45], museums [9], schools [20,46], hospitals [26] and research
institutions [30] by endowing participants with active RFID badges (SocioPat-
terns initiative) or with devices equipped with accelerometers, microphones,
Bluetooth and Infrared sensors (Sociometric Badges projects) which capture
body movements, prosodic speech features, proximity, and face-to-face interac-
tions respectively.

However, the different technologies (e.g., RFID, Bluetooth, Infrared sensors)
employed in these studies might imply potentially relevant differences in mea-
suring contact networks. Interaction range and the angular width for detecting
contacts, for instance, vary in a significant way, from less than 1 m using Infrared
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sensors to more than 10 m using Bluetooth sensors, and from 15° using Infrared
sensors to 360° using Bluetooth sensors. In many cases, data cleaning and post-
processing is based on calibrated power thresholds, temporal smoothing, and
other assumptions that introduce their own biases. Finally, experiments them-
selves are diverse in terms of venue (from conferences to offices), size (from
N ~ 50 to N ~ 500 individuals), duration (from a single day to several months)
and temporal resolution. The full extent to which the measured proximity net-
works depends on experimental and data-processing techniques is challenging to
assess, as no studies, to the best of our knowledge, have tackled a systematic
comparison of different proximity-sensing techniques based on wearable devices.

Here we tackle this task, showing that empirical proximity networks mea-
sured in a variety of social gatherings by means of different measurement sys-
tems yield consistent statistical patterns of human dynamics, so we can assume
that such regularities capture intrinsic properties of human contact networks.
The presence of such apparently universal behavior, independent of the mea-
surement framework and details, calls, within a statistical physics perspective,
for an explanatory model, based on simple assumptions on human behavior.
Indeed, we show that a simple multi-agent model [41,43] accurately reproduces
the statistical regularities observed across different social contexts.

2 Related Work

The present study takes inspiration from the emerging body of work investigating
the possibilities of analyzing proximity and face-to-face interactions using differ-
ent kinds of wearable sensors. At present, mobile phones allow the collection of
data on specific structural and temporal aspects of social interactions, offering
ways to approximate social interactions as spatial proximity or as the co-location
of mobile devices, e.g., by means of Bluetooth hits [1,15,32,33,47]. For example,
Do and Gatica Perez have proposed several topic models for capturing group
interaction patterns from Bluetooth proximity networks [12,13]. However, this
approach does not always yield good proxies to the social interactions occurring
between the individuals carrying the devices.

Mobile phone traces suffer a similar problem: They can be used to model
human mobility [8,22] with the great advantage of easily scaling up to millions
of individuals; they too, however, offer only coarse localization and therefore pro-
vide only rough co-location information, yielding thus only very limited insights
into the social interactions of individuals.

An alternative strategy for collecting data on social interactions is to resort to
image and video processing based on cameras placed in the environment [2,11].
This approach provides very rich data sets that are, in turn, computationally
very complex: They require line-of-sight access to the monitored spaces and
people, specific effort for equipping the relevant physical spaces, and can hardly
cope with large scale data.

Since 2010, Cattuto et al. [10] have used a technique for monitoring social
interactions that reconciles scalability and resolution by means of proximity-
sensing systems based on active RFID devices. These devices are capable of
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sensing spatial proximity over different length scales and even close face-to-face
interactions of individuals (1 to 2m), with tunable temporal resolution. The
SocioPatterns initiative has collected and analyzed face-to-face interaction data
in many different contexts. These analyses have shown strong heterogeneities
in the contact duration of individuals, the robustness of these statistics across
contexts, and have revealed highly non-trivial mixing patterns of individuals in
schools, hospitals or offices as well as their robustness across various timescales
[20,23,26,27,46]. These data have been used in data-driven simulations of epi-
demic spreading phenomena, including the design and validation of containment
measures [21].

Along a similar line, Olguin et al. [36] have designed and employed Sociomet-
ric Badges, platforms equipped with accelerometers, microphones, Bluetooth and
Infrared sensors which capture body movements, prosodic speech features, prox-
imity and face-to-face interactions respectively. Some previous studies based on
Sociometric Badges revealed important insights into human dynamics and orga-
nizational processes, such as the impact of electronic communications on the
business performance of teams [36], the relationship between several behavioral
features captured by Sociometric Badges, employee’ self-perceptions (from sur-
veys) and productivity [36], the spreading of personality and emotional states [3].

3 Empirical Data

In this section, we describe datasets gathered by five different studies: The “Lyon
hospital” and “SFHH” conference datasets from the SocioPatterns (SP) initia-
tive [10], the Trento Sociometric Badges (SB) dataset [30], the Social Evolution
(SE) dataset [32,33], the Friends and Family (FF) [1] dataset, and two datasets
(Elem and Mid) collected using wireless ranging enabled nodes (WRENSs) [49].
The main statistical properties of datasets under consideration are summarized
in Table 1, while the settings of the studies are described in detail in the following
subsections.

3.1 SocioPatterns (SP)

The measurement infrastructure set up by the SP initiative is based on wireless
devices embedded in badges, worn by the participants on their chests. Devices
exchange radio packets and use them to monitor for proximity of individuals
(RFID). Information is sent to receivers installed in the environment, logging
contact data. They are tuned so that the face-to-face proximity of two individu-
als wearing the badges are sensed only when they are facing each other at close
range (about 1 to 1.5m). The time resolution is set to 20's, meaning that a con-
tact between two individuals is considered established if their badges exchange
at least one packet during such interval, and lasts as long as there is at least
one packet exchanged over subsequent 20-s time windows. More details on the
experimental setup can be found in Ref. [10]
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Here we consider the dataset “Hospital”, gathered by the SP initiative at a
Lyon Hospital, during 4 workdays, and the dataset “SFHH” | gathered by the SP
initiative at the congress of the Société Francaise d’Hygiene Hospitaliére, where
the experiment was conducted during the first day of a two-days conference. See
Ref. [45] for a detailed description.

3.2 Sociometric Badges (SB)

The Sociometric Badges data [30] has been collected in a research institute
for over a six week consecutive period, involving a population of 54 subjects,
during their working hours. The Sociometric Badges, employed for this study,
are equipped with accelerometers, microphones, Bluetooth and Infrared sensors
which capture body movements, prosodic speech features, co-location and face-
to-face interactions respectively [36]. For the purposes of our study we have
exploited the data provided from the Bluetooth and Infrared sensors.

Infrared Data. Infrared (IR) transmissions are used to detect face-to-face inter-
actions between people. In order for a badge to be detected by an IR sensor, two
individuals must have a direct line of sight and the receiving badge’s sensor must
be within the transmitting badge’s IR signal cone of height 2 < 1m and a radius
of r < htan6, where § = + 15°. The infrared transmission rate (T'R;.) was set
to 1 Hz.

Bluetooth Data. Bluetooth (BT) detections can be used as a coarse indicator
of proximity between devices. Radio signal strength indicator (RSSI) is a measure
of the signal strength between transmitting and receiving devices. The range of
RSSI values for the radio transceiver in the badge is (—128 dBm, 127 dBm).
The Sociometric Badges broadcast their ID every five seconds using a 2.4 GHz
transceiver (T'R,q4io = 12 transmissions per minute).

3.3 Social Evolution (SE)

The Social Evolution dataset was collected as part of a longitudinal study with
74 undergraduate students uniformly distributed among all four academic years
(freshmen, sophomores, juniors, seniors). Participants in the study represents
80% of the residents of a dormitory at the campus of a major university in
North America. The study participants were equipped with a smartphone (i.e. a
Windows Mobile device) incorporating a sensing platform designed for collect-
ing call logs, location and proximity data. Specifically, the software scanned for
Bluetooth wireless devices in proximity every six minutes, a compromise between
short-term social interactions and battery life [17]. With this approach, the BT
log of a given smartphone would contain the list of devices in its proximity,
sampled every six minutes.

Participants used the Windows Mobile smartphones as their primary phones,
with their existing voice plans. Students had also online data access with these
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phones due to pervasive Wi-Fi on the university campus and in the metropolitan
area. As compensation for their participation, students were allowed to keep
the smartphones at the end of the experiment. Although relevant academic and
extra-curricular activities might have not been covered either because the mobile
phones may not be permanently on (e.g., during classes), or because of contacts
with people not taking part to the study, the dormitory may still represent the
preferential place where students live, cook, and sleep. Additional information
on the SE study is available in Madan et al. [32,33].

3.4 Friends and Family (FF)

The Friends and Family dataset was collected during a longitudinal study cap-
turing the lives of 117 subjects living in a married graduate student residency
of a major US university [1]. The sample of subjects has a large variety in terms
of provenance and cultural background. During the study period, each partici-
pant was equipped with an Android-based mobile phone incorporating a sensing
software explicitly designed for collecting mobile data. Such software runs in a
passive manner and does not interfere with the every day usage of the phone.

Proximity interactions were derived from Bluetooth data in a manner similar
to previous studies such as [16,32]. Specifically, the Funf phone sensing platform
was used to detect Bluetooth devices in the participant’s proximity. The Blue-
tooth scan was performed periodically, every five minutes in order to keep from
draining the battery while achieving a high enough resolution for social interac-
tions. With this approach, the BT log of a given smartphone would contain the
list of devices in its proximity, sampled every 5min. See Ref. [1] for a detailed
description of the study.

3.5 Toth et al. Datasets (Toth et al.)

The datasets, publicly available, were collected by Toth et al. [49] deploying
wireless ranging enabled nodes (WRENSs) [19] to students in Utah schools. Each
WREN was worn by a student and collected time-stamped data from other
WRENS in proximity at intervals of approximately 20s. Each recording included
a measure of signal strength, which depends on the distance between and relative
orientation of the pair of individuals wearing each WREN. More specifically,
Toth et al. [49] have applied signal strength criteria such that each retained
data point was most likely to represent a pair of students, with face-to-face
orientation, located 1 m from each other.

In the current paper, we resort to the data collected from two schools in
Utah: One middle school (Mid), an urban public school with 679 students (age
range 12-14); and one elementary school (Elem), a suburban public school with
476 students, (age range 5-12). The contact data were captured during school
hours of two consecutive school days in autumn 2012 from 591 students (87%
coverage) at Mid and in winter 2013 from 339 students (71% coverage) at Elem.
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4 Temporal Network Formalism

Proximity patterns can be naturally analyzed in terms of temporally evolving
graphs [24,25], whose nodes are defined by the individuals, and whose links repre-
sent interactions between pairs of individuals. Interactions need to be aggregated
over an elementary time interval At in order to build a temporal network [38].
This elementary time step represents the temporal resolution of data, and all
the interactions established within this time interval are considered as simulta-
neous. Taken together, these interactions constitute an “instantaneous” network,
formed by isolated nodes and small groups of interacting individuals (not nec-
essarily forming cliques). The sequence of such instantaneous networks forms
a temporal, or time-varying, network. The elementary time step Atg is set to
Atg = 20s in the case of SP data, Atg = 60s for SMBC data, Atg = 300s for
SE and FF data, and Aty = 20s for Toth et al. datasets. Note that temporal
networks are built by including only non-empty instantaneous graphs, i.e. graphs
in which at least a pair of nodes are connected.

Table 1. Some average properties of the datasets under consideration. SP-hosp =
“SocioPatterns Lyon hospital”, SP-sthh = “SocioPatterns SFHH conference”, SB =
“Sociometric Badges”, SE = “Social Evolution”, FF = “Friends and Family”, Elem =
“Toth’s Elementary school”, Mid = “Toth’s Middle school”

Experiment | Dataset | dev Aty |N | T D (k) |(s)

SP hosp RFID 20s| 84/20338|0.049 30.4| 1146
SP sthh RFID 205|416 | 3834|0.075|53.9| 502
SB SB IR 60 s| 56 |10238|0.064 | 14.2 734
SB SB BT 60 s| 5328604 |0.029  44.1 20481
SE SE BT 300 s| 70|64068|0.29 |66.2 | 48265
FF FF BT 300 s| 8248839 |0.33 |56.1|26418
Toth et al. | Elem WREN | 20s|339| 2242 0.20 |46.2 634
Toth et al. | Mid WREN | 20s|590| 24880.21 |82.8 605

Each data set is thus represented by a temporal network with a number N
of different interacting individuals, and a total duration of T' elementary time
steps. Temporal networks can be described in terms of a characteristic function
x(Z,7,t) taking the value 1 when individuals i and j are connected at time ¢,
and zero otherwise [42]. Integrating the information of the time-varying network
over a given time window 7T produces an aggregated weighted network, where
the weight w;; between nodes 7 and j represents the total temporal duration of
the contacts between agents i and j, wi; = >, x(4,4,t), and the strength s; of
anode 7, s, = Y j Wij, represents the cumulated time spent in interactions by
individual <.

In Table1 we summarize a number of significant statistical properties, such
as the size IV, the total duration 7" in units of elementary time steps Aty, and the
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average fraction of individuals interacting at each time step, p. We also report the
average degree, (k), defined as the average number of interactions per individual,
and average strength, (s) = N~!3"s;, of the aggregated networks, integrated
over the whole sequence. One can note that the data sets under consideration are
highly heterogeneous in terms of the reported statistical properties. Aggregated
network representations preserve such heteogeneity, even though it is impor-
tant to remark that aggregated properties are sensitive to the time-aggreagating
interval [38] and therefore to the specificity of data collection and preprocessing.

5 Comparison Among the Different Datasets

In this section we perform a comparison of several statistical properties of the
temporal networks, as defined above, representing the different datasets under
consideration.
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Fig. 1. Probability distribution of the duration At of the contacts between pairs of
agents, P(At), for the different datasets under consideration, compared with numerical
simulations of the attractiveness model. A power law form, P(At) ~ At~ Y4t with
Yar = 2.5, is plotted as a reference in dashed line. (Color figure online)

The temporal pattern of the agents’ contacts is probably the most distinc-
tive feature of proximity interaction networks. We therefore start by considering
the distribution of the durations At of the contacts between pairs of agents,
P(At), and the distribution of gap times 7 between two consecutive proximity
events involving a given individual, P(7). The bursty dynamics of human inter-
actions [6] is revealed by the long-tailed form of these two distributions, which
can be described in terms of a power-law function. Figures1 and 2 show the
distribution of the contacts duration P(At) and gap times P(7) for the various
sets of empirical data. In both cases, all dataset shows a broad-tailed behavior,
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Fig. 2. Probability distribution of the gap times 7 between consecutive contacts of
pairs of agents, P(7), for the different datasets under consideration, compared with
numerical simulations of the attractiveness model. A power law form, P(r) ~ 77 "7,
with v, = 2.1, is plotted as a reference in dashed line. (Color figure online)

that can be loosely described by a power law distribution. In Figs.1 and 2 we
plot, as a guide for the eye, power-law forms P(At) ~ At~ Y4t with exponent
Yat ~ 2.5, and P(7) ~ 77 V7 with exponent Y, ~ 2.1, respectively.

The probability distributions of strength, P(s), and weight, P(w), are a sig-
nature of the topological structure of the corresponding aggregated, weighted
networks. Since the duration T of the datasets under consideration is quite het-
erogeneous, see Table 1, we do not reconstruct the aggregated networks by inte-
grating over the whole duration T', but we integrate each temporal network over
a time window of fixed length, AT = 1000 elementary time steps. That is, we
consider a random starting time Tp (provided that Ty < T'—AT'), and reconstruct
an aggregated network by integrating the temporal network from Ty to Ty + AT
We average our results by sampling 100 different starting times. Note that, since
the elementary time step Atq is different across different experiments, the real
duration of the time window considered is different across different datasets.

Figures 3 and 4 show the weight and strength distributions, P(w) and P(s),
of the aggregated networks over AT, for the considered datasets. Again, all
datasets display a similar heavy tailed weight distribution, roughly compatible
with a power-law form, meaning that the heterogeneity shown in the broad-tailed
form of the contact duration distribution, P(At), persists also over longer time
scales. Data sets SB-BT, SE and FF present deviations with respect to the other
data sets. The strength distribution P(s) is also broad tailed and quite similar
for all data sets considered, but in this case it is not compatible with a power
law.

Finally, Fig. 5 shows the average strength as a function of the degree, s(k), in
the aggregated networks integrated over an interval AT. One can see that if the
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Fig. 3. Weight distribution P(w), for the different datasets under consideration, com-
pared with numerical simulations of the attractiveness model. (Color figure online)
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Fig. 4. Strength distribution P(s), for the different datasets under consideration, com-
pared with numerical simulations of the attractiveness model. (Color figure online)

strength is rescaled by the total strength of the network in the considered time
window, (s) = N~1 Z;‘E;OAT > X(4,4,t), the different data sets show a similar
correlation between strength and degree. In particular, Fig. 5 shows that all data
sets considered present a slightly superlinear correlation between strength and
degree, s(k) ~ kY with ¥ > 1, as highlighted by the linear correlation plotted as

a dashed line.



546 M. Starnini et al.

102 T T T

—
(=]
T

e SP-hosp

- O SP-sthh

o SB-IR
SB-BT

(@i

[22]
! es!
| YT

10° 10' 10° 10°
S

Fig. 5. Strength as a function of the degree, s(k), for the different datasets under con-
sideration, compared with numerical simulations of the attractiveness model. A linear
correlation s(k) ~ k is plotted in dashed line, to highlight the superlinear correlation
observed in data and model. (Color figure online)

6 Modeling Human Contact Networks

In the previous Section, we have shown that the temporal networks representing
different datasets, highly heterogeneous in terms of size, duration, proximity-
sensing techniques, and social contexts, are characterized by very similar sta-
tistical properties. Here we show that a simple model, in which individuals are
endowed with different social attractiveness, is able to reproduce the empirical
distributions.

6.1 Model Definition

The social contexts in which the data were collected can be modeled by a set of
N mobile agents free to move in a closed environment, who interact when they
are close enough (within the exchange range of the devices) [41]. The simplifying
assumption of the model proposed in [41] is that the agents perform a random
walk in a box of linear size L with periodic boundary conditions (the average
density is p = N/L?). Whenever two agents are within distance d (with d < L),
they start to interact. The key ingredient of the model is that each agent is
characterized by an “attractiveness”, a;, a quenched random number, extracted
from a distribution 7n(a), representing her power to raise interest in the others,
which can be thought of as a proxy for social status or the role played in the
considered social gathering. Attractiveness rules the interactions between agents
in a natural way: Whenever an individual is involved in an interaction with other
peers, she will continue to interact with them with a probability proportional
to the attractiveness of her most interesting neighbor, or move away otherwise.
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Finally, the model incorporates the empirical evidence that not all agents are
simultaneously present in system: Individuals can be either in an active state,
where they can move and establish interactions, or in an inactive one representing
absence from the premises. Thus, at each time step, every active individual
becomes inactive with a constant probability r, while inactive individuals can go
back to the active state with the complementary probabillty 1 —r. See Refs. [41,
43] for a detailed description of the model.

6.2 Model Validation

Here we contrast the results obtained by the numerical simulation of the model
against empirical data sets. We average our results over 100 runs with parameters
N =100, L =50, T = 5000. The results of numerical experiments are reported
in Figs. 1, 2, 3, 4 and 5, for the corresponding quantities considered, represented
by a continuous, blue line.

In the case of the contact duration distribution, P(At), Fig. 1, numerical and
experimental data show a remarkable match, with some deviations for the SB-
BT and FF datasets. Numerical data also show a close behavior to the mentioned
power-law distribution with exponent Y o; = 2.5. Also in the case of the gap times
distribution, P(7), Fig. 2, the distribution obtained by numerical simulations of
the model is very close to the experimental ones, spanning the same orders of
magnitude. The weight distribution P(w) of the model presents a very good fit
to the empirical data, see Fig. 3, with the exception of data sets SB-BT, SE and
FF, as mentioned above. The strength distribution P(s), Fig. 4, is, as we have
commented above, quite noisy, especially for the datasets of smallest size. It
follows however a similar trend across the different datasets that is well matched
by numerical simulations of the model. Finally, in the case of the average strength
of individuals of degree k, s(k), Fig.5, the most striking feature, namely the
superlinear behavior as a function of k, is correctly captured by the numerical
simulations of the model.

7 Discussion

All datasets under consideration show similar statistical properties of the indi-
viduals’ contacts. The distribution of the contact durations, P(At), and the
inter-event time distribution, P(7), are heavy tailed and compatible with power
law forms, and the attractiveness model is able to quantitavely reproduce such
behavior. The weight distribution of the aggregated networks, P(w), is also
heavy tailed for all datasets and for the attractiveness model, even though some
datasets show deviations. The strength distribution P(s) and the correlation
between strength and degree, s(k), present a quite noisy behavior, especially for
smaller datasets. However, all datasets show a long tailed form of P(s) and a
superlinear correlation of the s(k), correctly reproduced by the attractiveness
model.
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Previous work [10,20,27] have shown that the functional shapes of contact
and inter-contact durations’ distributions were very robust across contexts, for
data collected by the SocioPatterns infrastructure as well as by similar RFID
sensors. Our results show that this robustness extends in fact to proximity data
collected through different types of sensors (e.g., Bluetooth, Infrared, WREN,
RFID).

This is of particular relevance in the context of modeling human behavior
and building data-driven models depending on human interaction data, such
as models for the spread of infectious diseases, from two points of view. On
the one hand, the robust broadness of these distributions implies that different
contacts might play very different roles in a transmission process: Under the
common assumption that the transmission probability between two individu-
als depends on their time in contact, the longer contacts, which are orders of
magnitude longer than average, could play a crucial role in disease dynamics.
The heterogeneity of contact patterns is also relevant at the individual level,
as revealed by broad distributions of strengths and the superlinear behavior of
s(k), and is known to have a strong impact on spreading dynamics. In particu-
lar, it highlights the existence of “super-contactors”, i.e. individuals who account
for an important proportion of the overall contact durations and may therefore
become super-spreaders in the case of an outbreak.

On the other hand, the robustness of the distributions found in different
contexts represents an important information and asset for modelers: It means
that these distributions can be assumed to depend negligibly on the specifics of
the situation being modeled and thus directly plugged into the models to create
for instance synthetic populations of interacting agents. From another modeling
point of view, they also represent a validation benchmark for microscopic models
of interactions, which should correctly reproduce such robust features. In fact,
as we have shown, a simple model based on mobile agents, and on the concept
of social appealing or attractiveness, is able to reproduce most of the main
statistical properties of human contact temporal networks. The good fit of this
model hints towards the fact that the temporal patterns of human contacts
at different time scales can be explained in terms of simple physical processes,
without assuming any cognitive processes at work.

It would be of interest to measure and compare several other properties of
the contact networks, such as the evolution of the integrated degree distribution
Pr(k) and of the aggregated average degree in k(7T'), or the rate at which the
contact neighborhoods of individuals change. Unfortunately, these quantities are
difficult to measure in some cases due to the small sizes of the datasets.
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